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A Bipolar Transistor Model for Device 
and Circuit Design 

R. B. Schilling 

Solid State Division, Somerville, N. J. 

Abstract-The regional approximation technique is used for the development of 
transistor models. This technique uses the interaction of physics and 
mathematics. Physics is used as a guide to the mathematical approxi- 
mations. A linearized version of the Linvill lumped model is developed 
that is highly useful to both circuit and device designers. Model param- 
eters are found from the charge distribution. Model development using 
the regional approximation technique allows for adjusting the complex- 
ity of the model. It Is shown how a single region can adequately pre- 

dict device performance under extreme base -widening conditions. 
The device model's success is determined by the degree to which 

It represents physical reality while minimizing mathematical complexity. 

1. Introduction 

Renewed interest in the bipolar transistor has taken place during the 
last few years due to the advent of computer -aided design. This in- 

terest is centered on development of transistor models. Both circuit 
and device designers are seeking models that will predict performance 
over wide ranges of device operation. To satisfy both elements and to 

close the loop between them (in order to design the device for improved 
circuit performance) requires a model that is based on the internal 
physics of the device (the doping profile) . In addition, the model must 
be capable of handling effects such as base -widening, conductivity 

* A more detailed version of this paper is scheduled to be published by 
McGraw Hill, Inc., N.Y., as Chapter 1 in a book entitled Modeling of Solid - 
State Devices for Computer -Aided Design. 
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modulation, and other high -injection -level phenomena that are common- 
place during operation of present-day transistors. 

Analysis techniques from which transistor models have been derived 
fall into three categories : the classical -analytical approach,' the total 
computer approach,' and the recently presented regional approximation 
method (RAM).' The standard single -lump models (Linvill, Charge - 
Control and Ebers-Mole) are based on the classical approach. The 
classical approach has the advantage of an analytically tractable solu- 
tion, simplicity, and a clear description of the physics. However, this 
approach is based on low-level injection and very simplified doping 
profiles. The single -lump models derived from the classical approach 
are therefore limited in scope. The total computer approach uses 
iterative techniques to solve the basic transistor equations. The results 
obtained using this approach are highly accurate (perhaps more ac- 
curate than is possible for the material parameters to be determined) ; 

however, the complexity of the approach is far too great to be of use in 
computer -aided design. The regional approximation method is based 
on dividing the transistor into physically defined regions. By combining 
this technique with computer monitoring of approximations, significant 
simplifications can be self -consistently made while a high level of 
accuracy can be maintained. In addition, defining regions by boundaries 
that depend on the operating voltage and current emphasizes the under- 
lying physics and aids significantly in understanding the problem. 

The results presented herein demonstrate that an analytically 
tractable determination of certain transistor parameters (electric field, 
charge densities, etc.) can be obtained under wide ranges of device 
operation. Many of the approximations used to obtain the analytical 
solution were determined by careful scrutiny of the computer results 
obtained using the regional approximation method. For this reason, 
the regional approximation method will be reviewed as an integral part 
of the analytical technique. Attention will be focused on high-level 
conditions of operation, because solutions under low-level conditions 
are readily available in the literature. 

1.1 Structure 

The structure we consider is that of the planar n+-pvn+ transistor 
illustrated in Fig. 1 (v indicates a lightly doped n region). Under 
low-level conditions of operation, the active region requiring study (the 
base region) would he the fixed region contained between the emitter 
junction plane at x = 0 and the collector -junction plane at x = x31Ji both 
of which are defined by the metallurgical preparation of the structure. 
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TRANSISTOR MODEL 

In practice, under high-level conditions of operation (e.g., high -current 
low -voltage conditions) there can be substantial base widening, even 
to the point where the base reaches the metallic collector plane at x = L 

in Fig. 1. The regional approximation method must, therefore, provide 
regions whose boundaries are functions of the operating voltage and 
current. To this end the problem is divided into three separate regions, 

TRANSITION OHMIC 
BASE REGIONCOLLECTOR-1 

VE,META LLICI METALLIC 
V 

EMITTER/I \COLLECTOR 
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" I I I 

./A"+ 
1 l 

P \1 
I 

x 
I I 

(IC,VCE) XZ(IC,VCE) 
x 

xO xMJ X L 

(BASE -COLLECTOR 
METALLURGICAL JUNCTION) 

Fig. 1-One-dimensional transistor structure. 

each dominated by separate physical considerations. The regions, as 
shown in Fig. 1, are the base, transition, and ohmic collector regions. 
The boundaries between regions, x1 and x0, are functions of emitter cur- 
rent IE and collector -to -emitter voltage VCE. This procedure not only 
keeps the underlying physics clearly in view, but greatly simplifies the 
determining equations, allowing analytical solutions to be obtained. 

1.2 General Equations 

The following equations characterize the transistor problem : 

the electron -current density equation, 

dn 
J.= eµnE -I- eD - ; 

dx 

the hole -current density equation, 

dp J = eµppE - eDp ; 

dx 

[1] 

[2] 

the total -current density equation 

J = J+ J, = constant; [3] 
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the Poisson equation 

E dE --=p-n-N(x); 
e dx 

the electrostatic potential equation 

11, = -fEdx; 

the electron particle -conservation equation 

dJ -=-e(9-r); 
dx 

and the hole particle -conservation equation 

where 

cup -=e(g-r). 
dx 

D,,, Dp = electron and hole diffusion coefficients 

e = absolute value of electron charge 

E = electric field 

n, p = electron and hole densities 

µ,,, µp = electron and hole mobilities 

E = dielectric constant 

N = doping profile 

y = generation rate of electron-hole pairs 

r= recombination rate of electron-hole pairs 

[4] 

[5] 

[6] 

[7] 

For the case of the n -p -n transistor, the dominant carriers are 
electrons. The hole current J , is, therefore, significantly less than 
either of its two components, i.e., it is a small difference between two 
much larger currents. Further, with operation at useful values of 
gain, neither the generation nor recombination of carriers significantly 
perturb the current flow. With these "classical" approximations, Eq. 
[1] can be replaced by 
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TRANSISTOR MODEL 

do J = eµnE eD -_ J = constant, [8] 
dx 

and Eq. [2] by 

Dp dp/dx 
E - [9] 

µ P 

Eqs. [8] and [9], together with Eqs. [4] and [5], constitute the 
simplified transistor equations. From these equations, given J, t,G, and 
the doping profile N(x), the quantities n, E, and the gain are deter- 
mined. In practice, J and a boundary condition on n are used to 
generate n(x) and E(x), from which st, is found from Eq. [5]. 

Reduction of Eqs. [4], [8], and [9] to an equation in one variable 
yields a highly nonlinear third -order differential equation. In con- 
trast, through the use of the regional approximation method (RAM), 
only first -order differential equations will result, requiring substantially 
less computer time for solution and allowing rate -of -change calculations 
to be made using a slide rule. Also, through careful study of the results 
of the regional approximation method, a number of useful analytical 
equations can be obtained. 

2. Review of Regional Approximation Method° 

There are three regions in the problem, as illustrated in Fig. 1. Region 
I, adjacent to the emitter, is the classical base region characterized by 
approximate local neutrality. It terminates at the plane x1 where this 
neutrality approximation runs out of self -consistency, namely where 
the neglected space charge (E/e) (dE/dx) catches up with the separate 
components of charge in the base region. With this criterion, the base 
width is obviously not fixed, varying with the current and voltage. 
Herein, of course, lies the mathematical complexity of the problem. The 
three regions will be discussed separately: 

2.1 Region I x x1) 

This region is characterized by local neutrality, 

p -n - N(x) = O. [10] 

This expression replaces the Poisson Equation given in Eq. [4]. 
Between this base region and the highly doped n+ emitter is a 
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depletion layer. The left-hand edge of region I, x = 0, is taken at the 
base edge of the depletion layer. The density n(0) at x = 0 is known 
from junction theory, given a known emitter doping and voltage across 
the emitter-base depletion layer. This voltage, added to the voltage 
from 0 to L, gives the total transistor voltage. 

A differential equation in n is obtained by substitution of Eqs. [9] 
and [10] into Eq. [8], 

J 
n -- +-N 

dn eD da: eD 

dx 2n + 

Eq. [11] is an Abel equation of the second kinds and, with N(x) 
specified, it is readily solved for n(x) on a computer; p(x) is then 
given by Eq. [10] and E(x) by Eq. [9]. 

The self -consistency condition on the neglected space charge defining 
the end of region I is 

E (dE/dx1) 
x=x1: R(x1) =R1=- =0.5. 

e p1 

[121 

It turns out that the final results are quite insensitive to the partic- 
ular value of R = R1 used to terminate the base over the range 0.1 5 Rl 

1. At the plane x = 0, R is order of magnitudes less than unity. 
Eq. [11] serves as the focal point for development of the analytical 

equations. 

2.2 Region II (x1 x x2) 

This region is characterized by the domination of drift current over 
diffusion current, so that Eq. [8] may be approximated by 

J _ eµnE. [13] 

On the other hand, from the characterization in Eq. [12] of the ter- 
mination plane x = x1, it is clear that space charge cannot be neglected 
beyond this plane. Thus, we must use the Poisson equation in place of 
the neutrality condition. 

However, because p is negligible in this region (which can be shown 
using Eq. [9] for p when E has been determined from Eq. [151), Eq. 
[4] simplifies to 
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TRANSISTOR MODEL 

E dE --=-n-N(x). 
e dx 

[14] 

Substitution of Eq. [13] for n in Eq. [14] produces a differential equa- 

tion in E, 

dE J e 

_ - N(x). 
dx eµE E 

[15] 

Like Eq. [11], this is an Abel equation of the second kind, readily 

solvable by computer. 
Note that Eqs. [13], [14], and [15] characterizing this region are 

identical, for the case N(x) = constant (positive, negative, or zero), to 

the equations characterizing one -carrier space -charge -limited current 
theory (positive constant to the Ohm's-law-square-law transition prob- 

lem, zero to the perfect insulator problem, and negative constant to the 
trap -filled -limit problem) under homogeneous conditions, for which 
solutions are available.' For voltage drops across this region exceeding 
a few VT = kT/e, the neglect of the diffusion current in these problems 
has been justified by detailed studies.' 

Region II ends at plane x2, where, once again, space charge is no 

longer important, 

E I dE/dx2 
I 

x = x2; R(x2) = R2 = = 0.5. 
e n2 

[16] 

Note that Region II will usually contain the plane xd1 of the metal- 
lurgical junction between the p and V regions of the structure. 

2.3 Region Ill (x2 x L) 

Region III is an ohmic region, i.e., the space charge (E/e) (dE/dx) 
can be dropped from Eq. [14], giving 

n _ -N(x), 

or, using Eq. [13], 

J = -eµN(x)E, 

which determines E(x). 

[17] 
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By use of the above theory, a computer calculation has been made 
for the prototype power transistor illustrated in Fig. 2, namely, one 
containing an exponential doping profile. Plots of electron (and hole) 
density and electric field as a function of position at fixed VCE and vary- 
ing la are shown in Figs. 3 and 4, respectively. Details of the 
computer program used in obtaining these results can be found in the 
literature.' 

5 /11016 

ELECTRONS 

cm3 

X0 

0.3 MIL(Z62 MICRONS) 

XMJ OHMIC REGION 

6.5 ,0013 ELECTRONS 
cm3 

Fig. 2-Doping Profile for n+pPn+ prototype power transistor. 

3. Analytical Equations 

3 MILS 

At this point, equations have been developed that characterize the 
transistor in the base, transition, and ohmic regions. With these 
regional equations (Eqs. [11], [15], and [17] in the base, transition, 
and ohmic regions, respectively) and the computed results shown in 
Figs. 3 and 4, we will now analyze the device physics further in order 
to derive additional approximations. We will focus our attention on 
high -current low -voltage (base -widening) operation. The results ob- 
tained using the approximations developed below will be evaluated by 
comparing them with Figs. 3 and 4. 

3.1 Base Region (0 x x1) 

We note from Fig. 3 that the curves of electron density as a function 
of position, for bias conditions under which the base widens beyond 
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the metallurgical junction, are characterized by a positive slope, peak, 
and a negative slope as x increases from zero. 

The governing equation in the base region, Eq. [11], is in terms of 
the electron density and is rewritten here for convenience as follows : 

dn J dN 
(2n-l-N)-- -(n N) -n-. 

dx din dx 
[18] 

One method of simplifying the base region would be to separate the base 
into dn/dx> 0 and dn/dx < 0 regions. This procedure corresponds to 
neglecting the first and second terms on the right-hand side of Eq. [18], 
respectively (note : J and dN/dx are negative) . 

Another possibility for simplification is based on comparison of n 
and N in Eq. [18]. From Fig. 3, we note that within the positive 
sloping portion of n, n <N is followed by n> N as x increases from 
zero. 
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TRANSISTOR MODEL 

The above discussion points to two approaches to dividing and 

simplifying the base, namely n < N, n > N and dn/dx > 0, dn/dx < O. 

These approaches are discussed in the following paragraphs. 

3.1.1 Base Region Separation (a < N and n > N) 

Comparison of the electron density with the background doping in 

Fig. 3 leads to a physical division of the base in terms of n < N, n > N. 

Near x = 0, n < N; beyond some value of x, n > N. For very high cur- 

rent densities such as J = 100 A/cm2, only the region of n > N applies. 

The base is thereby divided into subregions with a boundary condition 
of n = N used to join the subregions. Use of n < N, n > N in Eq. [18] 

will lead to analytical equations for n(x) in the subregions. 

Considering n < N (or 2n < N) in Eq. [18] results in 

dn J dN N-=-N - n-, 
dx eD dx 

or 

d(nN) J =-N. 
dx eD 

Integrating Eq. [20] and solving for n yields 

n(x) = 1 n(o)N(o) + 
Jr 

N (x) eD J 

[19] 

[20] 

[21] 

Computation of n(x) using Eq. [21] is very simple. Comparison of 
results obtained using the analytical equations and Eq. [18] will be 

presented at the conclusion of the analytical discussion. 

For n > N in Eq. [18], 

dn J 1 dN 

dx 2eD 2 dx 
[22] 

Eq. [22] is very interesting in that it approaches the Webster equation 
as dN/dx approaches zero. Because J and dN/dx are both negative, it 
is determined from the right-hand side of Eq. [22] that the dN/dx 
term produces the positive slope and J term produces the negative slope 
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in the electron density. As x increases beyond x,rJ, dN/dx approaches 
zero, forcing the slope in the electron density to become negative and 
constant (this is not evident in Fig. 3 because a semi -log drawing is 
used). 

Solution of Eq. [22] for n(x) gives 

J 1 
n(x) = n(x') + (x - x') - - [N(x) - N(x') ], [23] 

2eD 2 

where x' represents the plane where n = N. 
The importance of Eqs. [21] and [23] for simplicity in obtaining 

n(x) analytically is evident. 
The importance of Eqs. [19] and [22] goes beyond the non -time - 

varying calculation of n(x), in that they also provide the starting point 
for the development of a "linearized" Linvill lumped model.' This work 
is in its early stages and, therefore, will only be discussed briefly here. 
Solution of Eq. [19] for J gives 

dn 
J - eD-+ 

dx 

dN 
eD - 

dx 
n for n <N. 

N 
[24] 

In the Linvill lumped approach to modeling, the key variable is the 
minority carrier density, n, and Eq. [24] is linear in n. The major 
drawback in the Linvill lumped approach regarding computation is that 
the drift term in the current equation is nonlinear, containing the 
product on n and E. Use of the approach outlined above to derive Eq. 
[24] removes the drawback of nonlinearity. The first term on the 
right-hand side of Eq. [24] represents the Linvill "diffusance" element. 
The second term represents a position -dependent conductance (because 
n behaves as potential in the Linvill scheme) . 

Rewriting Eq. [22] to solve for J, yields 

dn dN 
J=2eD-+eD- forn>N. [25] 

dx dx 

Eq. [25] is linear in n with the first term on the right-hand side 
being the "diffusance with D. replaced by 2D and the second term 
representing a position -dependent current source. 

The Linvill lumped elements given by Eqs. [24] and [25], together 

350 RCA Review Vol. 32 September 1971 



TRANSISTOR MODEL 

with the Linvill recombinance and storage elements, represent a major 
simplification in transistor modeling. The transistor circuit model 
corresponding to the above is obtained as follows: Linvill circuit ele- 
ments corresponding to Eq. [24] are used from x = 0 to x = x'; Linvill 
circuit elements corresponding to Eq. [25] are used from x = x' to 
x = x1; and an ohmic region represented by a resistor is used from 
x = x1 to x = L. The fact that Eqs. [24] and [25] were obtained under 
non -time -varying conditions may constrain these results to "quasi -time - 
varying" models. The ability of this approach to translate non -time - 
varying to time -varying conditions depends on dynamic monitoring of 
the subregion n < N, n > N interface where n = N. 

Transistor models that are presently in use, such as Ebers-Moll" and 
Gummel charge control,' are also based on static conditions. A further 
limitaton of these approaches is that the time -varying nature of the 
model is described only by external capacitances. In the "Regionalized" 
Linvill model suggested above, the time -varying parameters are in- 
ternal, i.e., recombination and storage and the charge density are treated 
"quasi -dynamically". 

Although Eqs. [21] and [23] yield a complete analytical description 
for n(x), other alternatives, brought about by defining subregions 
based on do/dx > 0, do/dx < 0, will also be considered. 

3.1.2 Base Region Separation-dn/dx > 0, dn/dx < 

a. do/dx > O, O < x < xp 

In the region of x = 0 the slope of the electron density is positive as 
shown in Fig. 3. Therefore, a subregion is defined from x = 0 to the 
plane in x, defined as x peak, where dn/dx equals zero ; it is assumed 
that the second term on the right-hand side of Eq. [18] dominates in 
this subregion. The governing equation obtained from Eq. [18] is 

dn dN (2n+N)-=-n-, 
dx dx 

with solution 

or 

[26] 

n2 + nN = (constant) = n2 (0) n (0) N (0) , [27] 

) 

CNZx) 

\2 
n(x) _ - + /I\ + K. [28] 
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Additional simplification of Eqs. [26] through [28] results if 
n < N, n > N are considered. Thus, for n < N, 

nN = K (constant) = n(o)N(o), 

and for n>N 

n= K (constant). 

[29] 

[30] 

The value of K in Eq. [30] serves as an upper limit for n peak. 

It appears that the results given by Eqs. [26] through [30] are 
independent of J. This is not the case, because n(0) is uniquely deter- 
mined by J for a given value of V0E. 

b. Location of dn/dx = 0 Plane 

Having solved for n(x) under the condition that do/dx > 0, we next 
consider the termination of this subregion at x = xp where dn/dx = 0. 

Eq. [18] then yields 

J dN -(n-f-N)=n- atx=xp. [31] 
eD dx 

It is evident from Fig. 3 that at xp, n» N. Using this result in Eq. [31] 
yields 

J dN -_ - at x = xp. [32] 
eD dx 

Eq. [32] accurately locates xp. 

c. dn/dx < 0, xn x x, The Webster Region10 

An often used equation in transistor physics is 

dn J=2eD-. 
dx 

[33] 

This equation results when n _ p » N in a region of the device where 
N = constant. The result for these conditions is evidenced in Eq. [22]. 

In many treatments of transistor analyses, Eq. [33] is assumed to 
hold throughout the base region from x = 0 to x = xa,,, (the base is 
assumed to terminate at x3, j - no base widening) . It is clear from 
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Fig. 3 that Eq. [33] does not hold near or at x = 0 under general con- 

ditions. We will now show that Eq. [33] is a good approximation in the 
base subregion where dn/dx < O. 

For dn/dx < 0, Eq. [18] is used with the first term on the right- 
hand side dominant, which results in 

2n 

+ N 

dn 
J = eD . [34] 

n+N / dx 

The Webster equation is obtained from Eq. [34] by noting that 
n» N in the region of Fig. 3 where dn/dx < O. 

Solving Eq. [33] for n(x) results in 

J 
n(x) _ (x x9)+np, 

2eD 
[35] 

where xi the location of the peak in the n(x) curve, is found from Eq. 
[32] and np, the peak value of n(x), is found from Eq. [28]. 

d. Webster Equation Correction 

In the vicinity of x1, n - IN I and Eq. [35] becomes less accurate. Addi- 
tional accuracy can be obtained from Eq. [34]. Near x1, it is noted in 
Fig. 3 that N _ -No= constant, where No is the ohmic collector con- 
centration. Under this condition, Eq. [34] becomes 

dn 
J = eD 

n - No dx 
[36] 

If we write the bracketed term in Eq. [36] as [2 + No/(n-No)], in- 
tegration becomes simplified, 

n(x) =n+ 
J 

(x-x) +Naln 
ni,- No 

2eD 2 [ n - No 
[37] 

At first glance Eq. [37] appears complex regarding determination 
of n(x). However, the first two terms on the right-hand side are 
identical to n(x) given by Eq. [35]. The log term is, therefore, a cor- 
rection factor that can be calculated using the value of n(x) obtained 
from Eq. [35]. With a computer, very accurate results can be obtained 
quickly from Eqs. [35] and [37]. 
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3.1.3 Exponential Profile 

Due to the unique property of the exponential profile (dN/dx « N), 
additional simplifications result. As an example Eq. [19] can be re- 
written 

dn J r dN/dx 

dx eD 
IL 

N 
[38] 

If we assume N « e-XX, we have (dN/dx)/N = -1/A, resulting in 

do J n -=-+- 
dx eD A 

Eq. [39] is a first -order linear differential equation with solution 

JA 
n(x) = n(0) ea ix - (e=" - 1) . 

eD 

[39] 

[40] 

Near x = 0 where do/dx > 0, the second term on the right-hand side of 
Eq. [39] dominates, resulting in 

n(x) = n(0) eaix, [41] 

which is equivalent to Eq. [29]. Eq. [41] works well as an upper bound 
on n(x). Use of the exponential profile results in a position -independent 
Linvill conductance term in Eq. [24]. 

3.1.4 Onset of Base Widening 

Eq. [39] was developed from Eq. [19] and is based on n < N and 
N « e-xia or (dN/dx)/N -1/A. We note from Fig. 3 that both the 
4 and 6 A/cm2 curves, in the vicinity of x = 0, are characterized by 
n < N. The profile used to develop Fig. 3, shown in Fig. 2, is given by 

N(x) = N(0)e-xia - No (1 - e-xix). [42] 

However, as shown in Fig. 2, N(o) » No, resulting in (dN/dx)/N 
-1/A. 
From the above discussion it is anticipated that both the 4 and 

6 A/cm2 curves can be described by Eq. [39]. The significance attached 
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to this description is that the 4 A/cm2 curve is pre -base -widening, and 
the 6 A/cm2 curve is in base widening. Eq. [39], therefore, must con- 
tain the factors determining the onset of base widening. The sensitivity 
involved in choosing n(0) at a given J (near onset of base widening) 
to obtain VOE = 4 volts is very apparent in Fig. 3. The simple result 
developed below from Eq. [39] to describe the onset of base widening, 
therefore, is very useful. 

Several interesting effects occur during the onset of base widening 
as shown in Fig. 3. For example, the slope of n at the origin changes 
sign from negative to positive as the current density increases from 
4 to 6 A/cm2. Intuition suggests, therefore, that the onset of base 
widening be determined where dn/dx = O. Setting dn/dx = 0 in Eq. 
[39] results in 

n(0) = - 1J1. 
eD 

[43] 

Eq. [43] accurately determines n(0) as a function of J for the onset 
of base widening. 

3.2 Transition and Ohmic Collector Regions 

The termination of the base region under conditions of base widening 
occurs where the profile is constant (see Figs. 2 and 3). Analytical 
treatment is carried out, therefore, using the results of the problem of 
the "trap -free solid with thermal free carriers," as outlined below.* This 
problem is treated in two regions which coincide with the transition and 
ohmic regions used in the regional approximation method. The applica- 
ble equations are Eqs. [13] and [14], rewritten here for convenience as 

J eµnE 
e dE 

=-n-{-Na 
e dx 

[44] 

[45] 

where n(x) = -N0 in the region of interest. The transition and ohmic 
regions are characterized as follows : 

(a) Transition region (x1 < x 5 x2) -N neglected 

J-eµnE 
c dE - = -n 
e dx 

[46] 

[47] 
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(b) Ohmic region (x2 x < L) - n(x) = N 

J _ eµN,E. 

The plane connecting the two regions is characterized by 

n(x2) = N, 

[48] 

[49] 

and the solutions are joined by requiring continuity of the electric 
field intensity : 

E(x2-) =E(x2+). [50] 

Solution of the electric -field intensity by use of Eqs. [46] and [47] 
results in 

2J 

E(x) = x+C 
Eµ 

[51] 

where C is determined by matching the electric field at x = x1 using 
Eq. [51] together with the value obtained from the solution in the base 
region evaluated at x1. 

The electric field solution in the ohmic collector, obtained directly 
from Eq. [48], is 

,T 

E(x) _ 
eµ,iNO 

[52] 

4. Comparison of Analytical and Regional Approximation Techinques 

To compare the results of the analytical and regional approximation 
method (RAM) techniques and to demonstrate the application of the 
analytical scheme a complete determination of a typical curve in Fig. 3 

will be carried out. 
We begin with a discussion of how the curves in Figs. 3 and 4 were 

generated using RAM since the procedure used for the analytical 
technique is obtained in a similar manner. Starting at x = 0, Eq. [11] 
is used subject to a boundary condition on the electron density at 
x = 0. The value of n(0) chosen for a given J determines the general 
shape of the electron -density curves shown in Fig. 3 and the electric 
field curves shown in Fig. 4. The value of n(0), therefore, determines 
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the voltage VCE for a given J (the voltage VoE is obtained by adding the 
emitter -to -base junction voltage, which depends on n(0), to the applied 
voltage between x = 0 and x = L). The value n(0) itself is not sig- 
nificant. The important item to consider when comparing the RAM and 
analytical techniques is that, for the same VOE and J, equivalent curves 
of n(x) and E(x) result. This will become clear below. 

Eq. [11] subject to n(0) and J, is solved from x = 0 to x1, which is 
determined through Eq. [12]. At x1 Eq. [15] takes over, subject to 
continuity of the electric field at x1. Eq. [15] is used up to x = x2, 

which is determined through Eq. [16]. From x2 to L, Eq. [17] applies, 
subject to continuity of the electric field at x = x2. 

To demonstrate the application of the analytical approach, Eqs. [21] 
and [23] will be used in the base region. These equations are chosen 
because they lend themselves to device modeling through the Linvill 
approach, as discussed previously. In addition, the exponential profile 
of Fig. 2 will be used, resulting in a linearized drift term in the Linvill 
model as given by Eqs. [24] and [25]. 

4.1 Base Region 

If we begin at x = 0, with Eq. [21] subject to an exponential profile, 
we obtain Eq. [40], which is rewritten here for convenience. 

JA 
n(x) =n(0)ea/a-}.-(e:/a-1). 

eD 
[53] 

We will consider the curves in Figs. 3 and 4 for J = 20 A/cm2. A value 
of n(0) = 2.0 x 1015 will be chosen. Note that this is not the value of 
n(0) used to obtain the J = 20 curve in Fig. 3, indicating a small error 
in n(x) near x = 0. This error is of little consequence because the main 
objective will still be met, that of obtaining equivalent curves of n(x) 
and E (x) over most of the structure for given values of VcE and J. The 
value of n(0) = 2.0 x 10-15 was chosen to get a reasonably close fit to 
the J = 20 curve in Fig. 3. With A = 1.1 x 10-4 cm (from Fig. 2) and 
D...= 25 (value used in obtaining Fig. 3 and 4), Eq. [53] becomes 

n(x) = 2 x 10169/x-5.5 X 1014(e2A-1) for 0 x a' [54] 

Eq. [54] is used until x = x' where n(x') - (2/3)N(x'). (The 
original development in Section .3 used n = N as the boundary. 
However, due to the term (2n + N) in Eq. [18], from which Eq. [21] 
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was obtained, a more consistent boundary is obtained between n = N/2 
and n = N) . 

For the present calculation, x' = 1.5X and n(x') = 7.05 X 1015 were 
used. Eq. [23] then becomes 

n(x) = n(x') - 2.5 x 1018 (x - x') 

-2.5 x 1015(e -0/T - e-x'/a) 

for x' x x1. 

[55] 

The location of x1 is obtained using Eq. [12], requiring 

E (dE/dx)1 

e 
= 0.5. [56] 

pl 

To obtain the condition given in Eq. [56] in terms of the electron den- 
sity, which together with Eq. [55] locates x1, we must first obtain an 
analytical equation for the electric field. 

4.1.1 Electric Field Equation 

In the portion of the base bounded by 0 5 x 5 x', Eq. [39] applies, 
which is equivalent to the electric field being constant and equal to 

-Dn 1 VT 
E_ -_- . [57] 

For the present analysis, this represents a field of -227 V/cm. 

Eq. [25] represents the current flow in the portion of the base 
bounded by x' < x x1. Rewriting Eq. [25] to obtain the electric field 

gives 

dn VT dn dN 1 
J = eD - -! -C -+ 

J 
neµ. 

dx n dx dx 
[58] 

The term in brackets in Eq. [58] is equal to E(x). Thus, removal of 
the quantity dn/dx by use of Eq. [25] results in 

VT J 1dN 
E(x) =- -{--- 

n 2eD 2 dx 
[59] 
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4.1.2 Location of x1 

It is evident from Fig. 3 that the location of xi occurs where the 
doping N(x) is approximately constant. Calculation substantiates that 

J/eD» dN/dx. 

Thus, simplification of Eq. [59] in the vicinity of xi yields 

VT J 
E(x) =- . 

n 2eD 

Use of Eq. [60] in Eq. [56], yields 

EVT J 2 

n2 (n N) =-- 
2e eD 

where dn/dx - J/(2eD) was utilized. 

[60] 

[61] 

For J = 20 A/cm2 and a value of E,. = 11.7, Eq. [61] results in 
n(xi) = 1.55 x 1014. With n(x1) known, xi can be found from Eq. [55]. 
Because xl» x, the term a-1iX in Eq. [55] can be neglected at x = xi. 
Substitution of n(xi) = 1.55 x 1014, x' = 1.5A, and n(x') = 7.05 X 101 
into Eq. [55] yields xi = 47,k = 51.7 micrometers. 

4.2 Transition and Ohmic Regions 

In the transition region, Eq. [51] is used for the electric field. A slight 
variation of Eq. [51] used for ease of computation is 

1E(x) 1 = 
21J1 

(x - xi) + [E(xi)P. [62] 

Use of Eq. [60] with n(xi) = 1.55 X 1014 yields E(xi) = 419 V/cm. 
With I J I = 20 A/cm2, Eq. [62] becomes 

lE(x) I _ V4.26 X 106 (x - xi) + 1.76 X 105 [63] 

where (x - xi) is in units of A. 

Eq. [63] is valid for x' S x < x2 where x2 is defined by Eq. [49], 
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requiring n(x2) = N0. The location of x2 is found by substituting Eq. 
[63] into Eq. [46]. 

The ohmic region holds for x2 ` x 5 L with noóm'c = N. and 
I E01 mic I 

J I /e,uN0 = 2000 V/cm. 
The results obtained from Eqs. [53] through [63] for IJI = 20 

A/cm2 and n(0) = 2 x 1015 are shown in Figs. 5 and 6 for the electron 
density and electric field, respectively. Also included are similar com- 
putations for n(0) = 2.5 x 1015. 

Agreement between computer and analytical techniques in Figs. 5 
and 6 is very close. It is evident that for a given J - VaR operating 
point, the electron density and electric field profiles obtained through 
computer or analytical techniques are, for all practical considerations, 
identical. The approximations used to obtain the analytical equations, 
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therefore, are justified. In addition, the analytical equations can now 
be used with confidence to develop simplified yet accurate models for 
determining transistor behavior. 

5. Dominant Region Technique 

In the previous sections, we developed the complete analytical approach 
for determining electron density and electric field profiles throughout 
the transistor. Under certain operating conditions, however, portions 
of the transistor have negligible effect on performance. For example, 
under extreme base -widening conditions, practically all of VCE is 
dropped across a small region near the collector. Taking advantage of 
these situations leads to significantly simplified, yet highly accurate re- 
sults. In this section, this "Dominant Region" technique is described. 
Two very important results in transistor behavior developed using this 
technique are discussed. The results presented below were brought to 
light through use of the regional approximation method. 
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5.1 Base -Widened Transit Time 

In the classical approach to transit -time calculations, the electron den- 
sity in an n -p -n transistor is assumed to vary in the base as shown in 
Fig. 7. The base transit time TB is then found as the ratio of the total 
base charge to the electron current density, 

QB (1/2)WBen(0) WB2 
TB= -= _ 

J n(0) 2D 
eD 

WB 

we 
POSITION 

Fig. 7-Electron density versus position for low-level injection. 

[64] 

Two assumptions are inherent in Eq. [64] : 

1. Only diffusion current is present, resulting in the profile in Fig. 7. 

2. Electron density is zero at fixed base width WB (no base widening) 
for all operating conditions (i.e., Io, VCE) 

These assumptions, however, are unrealistic under general operating 
conditions. 

Another variation of the transit -time calculation which includes 
drift current and conductivity modulation is obtained using Eqs. [1] 
and [9] with p n, resulting in 

dn 
J=2eD-. 

dx 
[65] 

The classical approximation of n(WB) = 0 (no base widening) is again 
assumed, yielding 
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W52 
TB = . 

4D 
[66] 

Use of Eq. [64] or Eq. [66] to calculate base transit time under con- 

ditions of base widening leads to useless results. What is required is 

calculation of the transit time that considers the specific current and 
voltage at which the device operates. For the device shown in Fig. 2 

with VcE = 4 volts and varying current density, the computer calcula- 

tions of transit time shown in Fig. 8 were obtained by dividing the 
total electron base charge shown in Fig. 3 by the electron current 
density. 

1006_ 
6- VCE 

av 
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rt- 

I 

1 
- COMPUTER --- ANALYTICAL 

4 6 
0.01 

80 2 4 6 8 2 4 

BASE TRANSIT TIME (Tx -µs 
10 

4 6 8100 

Fig. 8-Transit time versus current density, analytical and computer 
results. 

Rather than discard the form of the transit time formula given in 
Eqs. [64] and [66], a reinterpretation is presented for base -widened 
operation. We replace the fixed quantity WB by the effective base width 
WB (Ic. VOE) to obtain 

TB (le, VcE) = [W (Ic, VcE) ]2/(nD) [67] 

where ' is a factor to be determined. 
The use of Eq. [67] at J = 20 A/cm2 (VCE = 4 volts) with WB equal 

to 56.2 micrometers (Fig. 3), results in ,1D = 104. Since D= 25 was 
used in the computed calculation, 

(effective) - 4. [68] 

RCA Review Vol. 32 September 1971 363 



It is reasonable that rl = 4 under base -widening conditions because, 
over most of the structure, the Webster equation (D replaced by 2Dn) 
governs the solution, i.e., p approximately equals n. 

Eq. [67], therefore, gives reasonable values of base transit time 
under general operating conditions if ri is equal to 4 and WB (Ic, VcE) 
is interpreted as the effective base. The remaining quantity to de- 
termine is WB(Io, VcE). It is evident in Fig. 4 that, for IJI greater 
than 6 A/cm2, a major portion of VcE is carried in the ohmic region 
where IJ is equal to qµN. I E I, resulting in 

or 

IJI 
VcE = (L - WB), 

eµnNc 

W,i=L 
VcE(eµnNr) 

IJI 

For the transistor structure of Fig. 2, Eq. [70] becomes 

l001/CE 
WB(micrometers) = 76 

IJI 

[69] 

[70] 

[71] 

By use of Eqs. [67] and [71] with 77 = 4 and D.= 25, data for transit 
time was generated as indicated by the dashed curve in Fig. 8. Com- 
parison of computer -generated data and data obtained using Eqs. [67] 
and [71] indicates very close agreement. For I JI = 6 A/cm2, i.e., at 
the onset of base widening, agreement is not as close. 

Clarification is needed concerning the use of a single value of D. 
for a general comparison of both the computer and analytical methods. 
By use of the analytical method, Eq. [69], it can be seen that TB varies 
directly as D-1. The computer method of calculating TB is to divide 
the total base charge by J, 

TB = 

IV B 

q fncx)vix] 
o 

J 

Thus, for both results to be independent of Dn, it is necessary for n(x) 
to vary directly as Dn-1, a condition that is true over the portion of 
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the base where the Webster equation holds. This condition is shown in 

Fig. 3 to include most of the base. The reason for the discrepancy be- 

tween computer and analytical results at I J I = 6 A/cm2 is that, at the 
onset of base widening, only half the base is Webster -like. 

5.2 High -Field Region Under Severe Base Widening 

Destructive second breakdown in high -power transistors has been at- 
tributed to high fields in the vicinity of the collector metallization 
during high -current low -voltage operation, i.e., when the device is 
operating under severely base -widened conditions. Our purpose here is 

to analytically characterize the high -electric -field region in the col- 

lector under such conditions. 

5.2.1 Constant Mobility 

It is evident from Fig. 4 that as the current increases at fixed VoE, 

the ohmic region shrinks. For J 20 A/cm2, the ohmic region is sig- 
nificant in that a major portion of VoE is dropped across it. For J 

A/cm2, two physical effects become evident. First, the electric field 
becomes very large in the region of the collector; second, most of VaE 
is dropped in the high -field region to the right of the effective base 
(denoted by a small circle). It is this high -field region that is con- 
sidered below. 

In the high -field region, Eqs. [46] and [47] apply, resulting in 

-2J 
IEl = (x - xi) -1-E (x1). [72] 

qt. 
From Fig. 4 we note that as J increases beyond 100 A/cm2, the effect of 
E(x1) on E in the high -field region diminishes. Therefore, it will be 
assumed that E(x1) - 0, resulting in 

IEl = (x - x1)1/2 [73] 

Because almost all of VcE appears across the high -field region, we can 
write 

VCR -% I E I dx, 
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or 

8 J 
VCE _ - [L - xl]3/2. 

9 cµn 
[74] 

The technique of finding E(x) for a given operating condition is based 
on Eqs. [73] and [74] as follows. Given Vas and J, x1 is found from 
Eq. [74]. With x1 and J known, Eq. [73] is used to find E(x). 

(a) Analytical Results 

Comparisons of E(x) obtained using Eqs. [73] and [74] with the com- 
puter results in Fig. 4 are shown in Fig. 9 for J = 100, 250, and 1000 
A/cm2, respectively. VcE = 4 volts was used in each case and a constant 
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Jn 100 A/cm - 
1-- 
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I I 

J,1000 A/cm2 

--- ANALYTICAL T - COMPUTER 

70 71 72 73 74 

DISTANCE-µm 
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Fig. 9-Electric field versus position under severe base widening, analytical 
and computer results at J = 100, 250, and 1000 A/cm2. 
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mobility of 1000 was assumed. Fig. 9 represents an expanded version 
of the high -field region of Fig. 4. It is evident that as J is increased, 
the accuracy is improved. The approximations used, namely, the negli- 
gible effect of E(x1) on the high -field region and Vag being mainly 
taken up by the high -field region, are thereby verified. These conditions 
necessitate agreement between analytical and computer results for any 
velocity -field characteristic, assuming such a characteristic does not sig- 
nificantly alter the general features of the field profile upon which this 
method is based. 

(b) Constraints 
In the derivation of Eqs. [73] and [74], it is assumed, in addition to 
the normal regional approximations, that the background concentration, 
Ne, can be neglected in Poisson's equation (see Eq. [45]). It is re- 
quired, therefore, that the minimum density, nmIn, satisfy the condition 

nmin > N,. [75] 

Eq. [46] requires that the minimum density occur at x = L, the location 
of the maximum field. By use of Eqs. [46], [73], and [74], we can 
write the condition [75] 

E 

[76] 

For the device under study (N, = 6.5 x 101s) operating at VoE = 4 
volts, Eq. [76] yields I J I > 115 A/cm2. For I J I = 250 and 1000 A/cm2, 
the values of nmi = 1.1 X 1014 and 2.76 x 1014, respectively, indicate 
satisfaction of the constraint given in Eq. [75]. Note that the error 
in the analytical approach is rather small even at 100 A/cm2, because 
the electron density is greater than the background through most of the 
region of interest. Thus, the constraint given by Eq. [75] is more 
stringent than necessary and implies that the solution is certainly good. 
If Eq. [75] is not satisfied, a more accurate analysis is required. 

5.2.2 Field -Dependent Mobility 

This situation is analyzed using a "piecewise" linear approximation to 
the velocity -field characteristic. In this work, the following approxima- 
tion is used for electrons in silicon: 

region I, x1 S x xn 

v=µnE 
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where µh = 1000 cm2/V-sec and E(xh) = Eh = 3000 V/cm; 

region II, xh S x S x1 

v = (µh - µl) Eh +µ1E 
where µt = 455 cm2/V-sec and E(x1) = El= 14,500 V/cm: 

region III, x1 x L 

y = v,= 8.24 x 106 cm/sec. 

In region I, the solution is identical to that in the constant mobility 
case; thus, 

and 

-2J 
I = (x-xl)1/2 [77] 

Eµh 

xh f8 J eµhEh3 
Vi= E dx = - - (xh - x1)3/2 = . 

9 eµh 3J 
Xi 

In region II, Poisson's equation becomes 

E dE J J 

e dx env e[(µh - µ1)E + µ/E] 

[78] 

[79] 

Defining yo = (µh - µi)Eh and integrating yields [80] 

µl - (E2 - Eh2) + vo(E - Eh) = - (x - xh) [81] 
2 

The voltage across region II is found by substituting dx = dV/E into 
Eq. [79], resulting in 

V0 eµ1 

V2 = - (E12 - Eh2) + - (E1s - Eh3) . 

2J 3J 

Region III is characterized by 

[82] 

J = env,. [83] 
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Poisson's equation is given by 

or 

hence, 

dE J --_-, 
e dx ev, 

J 

E=Et+-(x-xt). 
Ev, 

J 
V3 - Ei(L - x1) + - (L - x,)2 

2v,e 

[84] 

[85] 

[86] 

Since the total voltage drop (VcE = V1 + V2 + V3) and V1 and V2, as 
specified by Eqs. [78] and [80], is given in terms of known quantities, 
V3 may be computed. If the sum of V1 and V2 is less than VcE, V3 is 

positive and Eq. [86] can be used to find x1. Eq. [81] evaluated at xi 

yields the boundary xh; x1 can then be determined from Eq. [78]. With 
specification of the boundaries completed, the fields can be calculated ín 

each region. If the sum of V1 and V2 is greater than VcE, region III 
does not exist. Under this condition Eqs. [81] and [82] are rewritten 

µt J - (EL2 - Eh2) + vo(EL - Eh) _ - (L - xh) 
2 

EVo Eftt 

v2 = - (EL2 - Eh2) + - (EL3 - Eh3) . 

2J 3J 

Because there are only two regions, 

V2 - VCE - V1. 

[87] 

[88] 

[89] 

Eq. [88] can be solved for EL, allowing xh to be calculated from Eq. 
[87]. Should Eq. [89] yield V2 < 0, there is only one region, and the 
problem reduces to the case of constant mobility. It should be obvious 
that the number of regions and the position of the boundaries are 
functions of the operating point, i.e., J, VcE. Fig. 10 indicates the 
effect of inclusion of field -dependent mobility for the device previously 
analyzed. 

A constraint similar to that given for the constant -mobility case 
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must be considered. Because 

J = qnv, [90] 

the maximum velocity must be determined from the field solution and 
the v -versus -E characteristic and requires that 

nmin > no, [91] 

resulting in 

J > gnavma1. [92] 
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TRANSISTOR MODEL 

As in the constant -mobility case, this constraint is more stringent than 
necessary; in some cases, a closer look may result in an easing of the 
constraint. 

6. Conclusions 

This paper has shown how the regional approximation technique is used 
for the development of transistor models. The key to the success of 
this technique is the interaction of physics and mathematics; the 
physics is used as a guide to the mathematical approximations. A 

linearized version of the Linvill lumped model was developed in Section 
3. This model is highly useful to both circuit and device designers. 
The model parameters are simply found from the charge distributions 
discussed in Sections 2 and 3. Model development using the regional 
approximation scheme allows for adjustment of the complexity of the 
model. Section 4 showed how a single region can adequately predict 
device performance under extreme base -widening conditions. 

The success of a device model is judged largely by its capability to 
represent physical reality with minimum mathematical complexity. As 
has been shown, such a combination is feasible. 
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Small -Signal Theory of a Transit -Time -Negative - 
Resistance Device Utilizing Injection from a 
Schottky Barrier 

K. P. Weller 

RCA Laboratories, Princeton, N. J. 

Abstract-A punch -through negative -resistance semiconductor device that util- 
izes injection from a Schottky barrier and transit delay in a veloc- 
ity -saturated drift zone is described. A small -signal theory for the 
microwave impedance of this device is derived, and the result is used 
to predict the parameters required for optimum operation at a given 
frequency. The theory is applied to a device incorporating the PtSi- 
on-silicon Schottky barrier to evaluate the high -frequency operation. 
The desired barrier properties for microwave and millimeter -wave 
operation are discussed briefly. 

Introduction 

A semiconductor diode in which charge carriers injected or generated 
near one contact drift at saturated velocity to the other collector 
contact will usually exhibit a negative resistance over some frequency 
range. The best known device of this type is the avalenche diode 
proposed by Read.' More recently another transit -time device based 
on carrier injection from a p -n junction into a depleted drift zone was 
proposed? This device is biased so the depletion region punches 
through the drift zone to the injecting junction during a portion of 
the rf voltage swing. Only during this portion of each cycle are 
carriers injected into the drift zone. Fabrication of this device requires 
a rather complex triple epitaxial layer structure to ensure that the 
injected carriers travel at saturated velocity through most of the 
drift zone. 
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Recently, Coleman and Sze have reported that a similar punch - 
through device, using a Schottky barrier rather than a p -n junction, 
was fabricated and oscillated in the 4-6 GHz region.' The operation 
of such a device is the subject of this paper. The device, shown in 
Fig. 1(a), consists of an n -type semiconductor layer of width W sand- 
wiched between two Schottky -barrier contacts. Other versions of the 

SCHOTTKY ; 
BARRIER ' n-TYPE 
METAL %; 

SEMICONDUCTOR 

w 

(o) DEVICE STRUCTURE 

(b) 0-BIAS BAND DIAGRAM 

(cl BIASED TO PUNCHTHROUGH 

SCHOTTKY 
BARRIER 
METAL 

Fig. 1-Device configuration and energy -band diagrams for one version of 
the Schottky -barrier injection transit time diode. 

device are possible. For example, the Schottky barrier on the right 
could be replaced by a n -p+ barrier. This junction is used solely to 
deplete the drift zone of carriers and permit a high electric field to 
exist near the forward -biased Schottky -barrier interface on the left. 
The Schottky barrier on the left should not be replaced by a p -n junc- 
tion, since it is desirable to have a contact that provides limited current 
injection even under large forward bias. A complementary structure 
utilizing electron injection from the metal is also conceivable by pro- 
viding a Schottky -barrier metal with a sufficiently large barrier poten- 
tial 49Bp for holes. The analysis presented here relates to the structure 
of Fig. 1, but the results are applicable to the other versions with little 
modification. 
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Small -Signal Analysis 

A simplified energy -band diagram of the device is shown in Fig. 1(b). 
The bending of the conduction -band edge E, and valence -band edge E,, 
resulting from the metal-semiconductor contact potential are shown 
when no bias is applied to the diode. The Fermi level EF is a constant 
since the system is in thermal equilibrium. Applying a bias VA shifts 
the relative position of the Fermi level in the two metal contacts as 
shown in Fig. 1(c) . For a sufficiently large bias, the semiconductor 
layer is depleted of majority carriers. The large potential barrier of 
the reverse -biased contact on the right prevents the flow of majority 
carriers from the semiconductor to the forward -biased contact on the 
left. But a significant current density can result from injection into 
the semiconductor at the forward -biased contact, as illustrated in 
Fig. 1(c), since the barrier potential is relatively low. 

There are two possible bias regions in which this current density 
will be strongly modulated by an applied rf voltage. These two regions 
are more clearly discussed in terms of the electric field C7b at the left 
metal-semiconductor interface. When the semiconductor layer is com- 
pletely depleted of carriers, this field is related to the applied voltage by 

VA gNDW 
Cb=- 

W 2 
[1] 

where c is the static dielectric constant, ND is the donor density, and 
q is the electronic charge. One of these bias regions lies between the 
voltage required for complete depletion of the n -layer and the voltage 
for &b = 0 (where VA = gNDW2/2E) . In this region, the electric field 
near the left interface is negative. The effective potential barrier that 
holes in the metal must overcome to enter the semiconductor is 
4)Bp -i- Eb2/(2gND). As the voltage VA is increased, 16b1 decreases, 
thereby lowering the effective barrier potential and enhancing the cur- 
rent. The second and higher bias region requires that 5b » O. In this 
region, the actual barrier potential Opp is a function of field. The 
mechanisms involved in this mode of operation are discussed in more 
detail later. Because of the uncertainty in the semiconductor layer 
width, it is not possible to determine from Coleman and Sze's' published 
data the bias region in which their devices oscillated. 

Operation in the lower bias region suffers from the same disad- 
vantage as the earlier p -n junction device proposed by Ruegg.' The 
electric field in the drift zone of the semiconductor is very low adjacent 
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to the injecting contact. The carriers do not travel at saturated velocity 

in this low -field region, but at a field -dependent velocity. Although this 

mode of operation will result in a negative resistance at the proper 

frequency, the ultimate high -frequency performance is expected to be 

poorer than that for operation in the higher bias region. In addition, 
the analysis is complicated by the existence of a region of field - 

dependent velocity in the drift zone. The analysis to follow will there- 
fore concentrate on the higher -bias mode of operation, which assumes 

VA > gN,W2/2e. For this mode of operation, it is desirable to make the 

semiconductor layer as near intrinsic as possible to reduce the applied 

voltage required. 
The injected current density for Cab > 0 can be expressed as` 

q(Pan 
Jb = A*k T2 exp - , [2] 

kT 

where A** is the effective Richardson constant, T. is the junction 
temperature, and k is Boltzmann's constant. In the analysis it is 

assumed that A*' is not a function of the electric field C7 b, but that 
the barrier height ¢a, is. For simplicity, only the image -force barrier - 
lowering mechanism, or Schottky effect, will be included in the analysis. 
The modifications required to include other barrier -lowering mechan- 
isms will be discussed briefly following the analysis. The barrier height 
can be expressed as 

95ar = Ono - L37 

where ¢no is the barrier height when Cab = 0 and 

= q8b/47re. 

The dielectric constant e of the semiconductor is rather vaguely defined 

in this expression, but experimental results indicate that using the 
static value is appropriate.' 

The expression for injected current at the left-hand side of the 
drift zone is now used to derive the small -signal impedance of the diode. 
The procedure used is similar to that of Gilden and Hines for the Read 
avalanche diode.' This analysis relies on the fact that the total ac 
current density JT, which is the sum of displacement -current density 
Jd(x) and ac conduction -current density 10(x), is independent of posi- 
tion x. The injected ac current density can be expressed as a complex 
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fraction of the total ac current density as follows 

Jb = mfr. [4] 

Assuming the drift velocity vd is saturated, the ac conduction current 
density at any position x in the drift zone is 

jwx 
Jc(x) = MJT exp - - , 

vd 
[5] 

where 0) is the angular frequency. The total ac current density is then 
JT = Jc(x) -f- 9toE¿(x) [6] 

Rearranging Eq. [6] yields an expression for the ac field -(x) at any 
point in the drift zone 

IT rr jmX 

(x) =me[ 1 - Mexp - j d ll 
} [7] 

If the small -signal assumption is made that the ac field C7b is much 
small than the de field - bo at the forward -biased contact, Eq. [2] can 
be separated into ac and do components. The result is 

where 

and 

Jb=JaO+ja, 

{ - q 96bo Jbo=AtT2exPao- r, 
kT 4a / e J 

[8] 

4Jbo q 
Jb= 6b 

2kT 47rbo 

Combining the expression for Jb with Eqs. [4] and [6] evaluated at 
x = 0 leads to the expression 

M= 
1 

[9] 

376 RCA Review Vol. 32 September 1971 



SMALL -SIGNAL THEORY 

where 

b -( q q J bo 

2k TE 47re) V660 

Substituting this equation into Eq. [7] and integrating over the length 
of the drift zone W gives 

1 

1 

(1-e-fB) 
1 + j- \ j9 

cob 

[10] 

for the ac voltage. Here we have defined the transit angle O = wW/vd. 

Finally, the ac impedance 2, separated into real and imaginary parts, is 

1 

+ - 
jwC 

O) 

1 -cosO+ -sinO 
0)6 

B[1+(«b)2I 
w 

sin O - - (1 - cos 0) 
«J6 

1 

B[ 1 + 
(-)1, 

)zJ 

where C = A/W is the capacitance of a diode of area A in the absence 
conduction current. It is clear from examination of the real part of Z 

that the requirement on transit angle for obtaining negative re- 
sistance is 

27r(n+1/2) <0< (n+1) 27r,n=0,1,2,... [12] 

For a given transit angle in this range, the resistance is negative only 
when the operating frequency exceeds some minimum value which is 
dependent on O and wb. 
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Discussion 

The real part of Z can be made negative for any value of the ratio 
w/tab greater than zero through the choice of an appropriate transit 
angle. However, the magnitude of the negative resistance becomes 
small for w/rob < 1. This is illustrated in Fig. 2 where the real part 
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Fig. 2-Small-signal negative resistance as a function of transit angle. 

of Z normalized to 1/.0C is plotted as a function of O for several values 
of ¿/wb. As w/wb decreases, the range of O over which negative re- 
sistance occurs becomes smaller. Simultaneous optimization of the real 
part of Z with respect to °,/tub and 6 results in an optimum transit 
angle of approximately 292°. The real and imaginary parts of Z are 
plotted as a function of 0/°,b for this value of O in Fig. 3. The optimum 
negative real part is obtained for w/wb = 1.88. For these conditions, the 
negative Q of the diode (defined as the angular frequency times the 
ratio of average stored energy to average energy generated per unit 
time) is approximately 22.5. 

The negative Q of this device is generally much larger in magnitude 
than can be obtained with avalanche diodes, and higher Q circuits are 
required to obtain a self-sustaining oscillation. The efficiency of the 
device as an oscillator or amplifier is expected to be lower than that of 
the avalanche diode. However, carrier injection is expected to be a 
much quieter process than avalanche generation. Therefore the device 
has potential as a low -noise low -power oscillator or amplifier. 

As a practical example, the analysis is applied to the platinum- 
silicide on n -type silicon Schottky -barrier contact. The relevant para - 
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Table 1-Parameters of the PtSi-Si Schottky Barrier.10 

Parameter Value 

A** for holes 32 A cm -2 °K-2 

q¢AO for holes 0.25 eV 

e 12e° 

meters are listed in Table 1. The effect of the Schottky -barrier 
properties on the diode performance is contained in the "injection 
frequency" cub, which is proportional to Jbo/bo In Fig. 4, Jbo is 

plotted as a function of V6b0 for several values of junction tempera- 
ture T for the PtSi-Si barrier. At this point, only the solid curves are 
relevant. The value of field 6b0 is limited to between 104 and 4 X 105 

V/cm. The field must be greater than 104 V/cm to ensure that the 

injected holes travel at saturated velocity through the drift zone. If 

the hole velocity is not saturated, the ac field in the drift zone will 

modulate the carrier velocity, thereby affecting the phase relationship 
between the voltage and current. When the field exceeds a few times 
105 V/cm, avalanche breakdown in the drift zone will occur. 

In Fig. 5, the Schottky -barrier injection frequency fb = .b/ 2r is 

plotted as a function of for several values of T. As discussed 

previously, the device should operate with optimum performance at a 
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Fig. 3-Real and imaginary part of L as a function of w/mz, for a transit 
angle of 292°. 
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Fig. 4-DC injected current density as a function of the square root of 
the dc electric field at the interface for PtSi barrier. 
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Fig. 5-PtSi Schottky -barrier injection frequency (0/2s7) as a function 
of the square root of the dc electric field at the interface. 
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frequency of about two times f b. The solid curves in Fig. 5 indicate 

that, for high -frequency operation, the diode may operate best at 
elevated temperature. The image -force barrier lowering is not great 
enough for the junction field to have a strong effect on fb. 

There is good experimental evidence that the actual barrier lowering 
is somewhat larger than predicted by the Schottky effect. Several 

mechanisms have been proposed, including electric field penetration into 

the barrier metal,' the dependence of the level of occupation of semi- 

conductor surface states on rb,s penetration of surface -state charge 
into the semiconductor; and field dependence of barrier height pre- 
dicted by an analysis of the equilibrium bound -charge distribution near 
the metal-semiconductor interface!' The relative importance of each 

mechanism is dependent on the surface condition of the semiconductor 
prior to formation of the Schottky barrier and the reaction that takes 
place between the metal and semiconductor. The density and distribu- 
tion of surface states and the thickness of an insulating layer between 
the metal and semiconductor play a role in determining the field de- 

pendence of the barrier height. Regardless of the physical origin, the 
additional barrier lowering can be approximated as a linear function of 

(Sb, making the total barrier lowering 

46b 
AO= -+ a8b, 

47re 

[13] 

where a is a proportionality constant that must be experimentally 
determined. The small -signal theory parameters are then modified as 
follows : 

9 4 

1>b = + a Jb0 
kTc(NI 167reGbo 

q 60 
Jbo = A*T2 exp - ao - 

kT C 47re 
a6bO } 

[14] 

[15] 

This modification can have a dramatic effect on the curves of Figs. 4 

and 5. Values of a measured on silicon Schottky barriers range from 
15 to 35 A.'° The value for a for PtSi on p -type silicon has not been 
measured, but, for the purpose of illustration, a value of 10 A was 
assumed and the curves of Jbo and f b at T = 300°K plotted. These 
curves (dashed lines in Figs. 4 and 5) indicate that the existence of 
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even a small linear dependence of barrier height on electric field will 
make room -temperature operation at microwave frequencies possible. 
If the value of a is as great as 20 A (the experimental value obtained 
for RhSi on p -type silicon10), operation through the millimeter wave 
range to 100 GHz is possible. Alternatively, use of a metal-semicon- 
ductor junction with a barrier potential that is slightly smaller than 
sbEr, in the PtSi-Si system will make very high -frequency operation 
feasible. 
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GaN Electroluminescent Diodes 

J. I. Pankove, E. A. Miller, and J. E. Berkeyheiser 
RCA Laboratories, Princeton, N. J. 

Abstract-GaN diodes of the i -n (insulating -to -n -type) variety have been made 
by Zn doping. These exhibit green dc electroluminescence at room 
temperature. The radiated output is proportional to the input power; 
the external power efficiency is 10-4; an external quantum efficiency 
of 10-2 has been obtained. The response time of several microseconds 
is limited mostly by the RC time constant of the structure. Photovoltaic 
measurements indicate a barrier height of about 1.6 eV at the i -n 
transition. 

Introduction 

Insulating GaN can be obtained by growing the material by the vapor - 
phase technique' in the presence of Zn vapor. We have recently 
reported electroluminescence in insulating GaN to which connections 
were made by point -contact electrodes.' The emission had a relatively 
low efficiency and occurred at many microscopic spots correlated with 
grain boundaries. 

The present paper deals with the observation of more efficient 
electroluminescence over an extended area. The luminescence was ob- 
tained at the i -n transition between a 20-µm n -type layer and a 2.4-µm 
insulating layer, both grown by vapor transport. Hall measurements 
indicate an electron concentration of 1 X 1018 cm -3 and a mobility of 
240 cm2/Vsec in the n -type layer. Properties of i -n transitions in GaN, 
other than electroluminescence will also be described. 

Electrical Characteristics 

The presence of the insulating layer was detected by probing the 
surface with a point contact. When the cleaved side of the crystal was 
probed, the highly conducting region was found. The wafer was cut 
ultrasonically into about 1 -mm -diameter disks. Indium contacts were 
made to the exposed edge of the n -type GaN with a peripheral ring 
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electrode and also to the center of the insulating layer. Rectification 
characteristics could be obtained. Although these varied from sample 
to sample, Fig. 1 shows a typical 1(V) dependence. The 1(V) character- 
istic, with the insulating layer positive with respect to the n -type layer, 
usually exhibits a quadratic dependence I a V2. 

The capacitance of a 10-3 cm2 indium dot is 3 x 10-12 F. From 
these values, one deduces that the thickness of the insulating layer 
is 2.4 µm. 
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Fig. 1-1V characteristics of i -n diodes. 

Emission Spectra 

The photoluminescence spectra of the Zn-doped GaN peaked at about 
2.8 eV at 78°K (the usual transition to Zn centers) with a weak 
near -gap contribution at 3.45 eV (Fig. 2). As the specimen was 
warmed up to 242°K, a new peak appeared at 2.5 eV; at room tempera- 
ture, this peak is dominant and positioned at about 2.47 eV. The 
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Fig. 2-Photoluminescence spectra at various temperatures for region of 
main interest. The low energy edge cutoff below 2.3 eV due to the 
photomultiplier response. 

material is very nonuniform, however, and other spectra could be found 
at various locations on this wafer (see, for example, Fig. 3) . Similar 
observations of nonuniformity were later found by electroluminescence. 

Electroluminescence was obtained under the contact to the insulating 
layer. In some units, blue -violet light was emitted, and in others, green 
light. Broad peaks at 2.8, 2.4, 2.1, 1.8 and 1.5 eV could be found with 
"forward" bias (positive on the indium dot). With "reverse" bias 
(negative at indium dot), only small bluish microplasmas could be seen 
-and sometimes incandescence. The brightest and most uniform emis- 
sion was the green emission (see Fig. 4). The green light appeared 
uniformly under the indium dot of two diodes and under part of the 
dot of several other diodes. 
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Fig. 3-Photoluminescence spectra at 300°K of another region of same 
crystal as used in Fig. 1. 
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Fig. 4-Electroluminescent spectra at room temperature for three different 
currents through the i -n transition. 

Conversion Efficiency 

The emission intensity increased approximately as the 3/2 power of 
the current and linearly with the power input, up to burn -out at 270 mW 
(Fig. 5). Note that the proportionality of light output to 3/2 power 
of current is consistent with the quadratic 1(V) characteristic and the 
linear dependence of light on input power (P{ = I X V = I X I1/2). The 
maximum input power density (> 100 W/cm2 pulsed) could not be 
determined because the current distribution is believed to be non - 
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Fig. 5-Dependence of light intensity on current and on input power. 
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uniform. The cw luminescence efficiency was determined from a 
measurement of the emitted power using a calibrated selenium detector 
that collected almost all the light emitted from one side of the diode. 
It was assumed that only one half of the radiation was collected by the 
detector. The power efficiency was then about 10-4, and the quantum 
efficiency was about 3.5 x 10-3 at 35 µA and over 10-2 at 1 mA. 

Temperature Dependence 

One diode was immersed in parafin oil, which is transparent between 
3500 A and 1.2 µm. The emission of the diode was measured with a 
45 -volt forward bias at various temperatures up to 150°C. The emission 
of the green peak shifted to lower energies by about 40 meV (less than 
the -70 meV expected from the temperature dependence of the energy 
gap') . Since the current increased with temperature while the emission 
output remained nearly constant, it can be concluded that the emission 
efficiency decreased with increasing temperature. 

w" 

a 

2.0 2.2 2.4 2.6 2.8 3.0 3.2 34 
lo/T 

Fig. 6-Temperature dependence of diode internal resistance. 

During the above experiment, it was convenient to measure the 
/( V) characteristic of the diode and to determine its approximate in- 
ternal resistance from the slope of the /( V) curve at the highest cur- 
rent. This data plotted against 1/T (Fig. 6) indicates a thermal 
activation energy of 0.13 eV for transport in the insulating layer 
above 315°K. 

Photovoltaic Properties 

Since basically the diode consists of two differently doped regions, it 
was interesting to explore the photovoltaic properties of the i -n transi- 
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Fig. 7-Photovoltaic spectrum of i -n transition illuminated through n -region. 

tion. The photovoltaic spectrum peaks at 3.30 eV (Fig. 7). The abrupt 
cutoff at the higher energy edge of the photovoltaic spectrum is deter- 
mined by absorption in the n -type layer-this indicates that the hole 
diffusion length is much shorter than 2 x 10-e cm. The low -energy 
edge tails down exponentially as exp (hv/0.076 eV). The diode was then 
illuminated with an Xe lamp filtered to transmit only UV radiation (no 
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Fig. 8-Dependence of photovoltage on light intensity. 
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photovoltage is obtained below 2.6 eV). The intensity of illumination 
was varied by changing the lamp -to -diode distance, by inserting neutral - 
density filters, or by focusing the radiation. The intensity of the 
incident radiation was checked with a selenium detector. The cor- 
responding response is shown in Fig. 8, which indicates that the photo - 
voltage tends to saturate beyond about 1.6 eV. 

The saturation of the open -circuit photovoltage is a measure of the 
barrier height, 43B, at the i -n transition (Fig. 9) : the maximum photo - 
voltage is obtained when the bands have been flattened. The polarity 

CB 

EF 

777Ti/-/7- 
ACCEPTORS LLLLt-% ! 

VB 

n 

Fig. 9-Band structure at i -n transition. 

of the photovoltage is positive at the indium dot, in accord with the 
present model. The i -n transition was scanned with a light spot from 
a Zr arc lamp focused to a diameter of less than 20 µm. There was no 
substantial change in the photovoltage over the entire area of the i -n 
transition even outside the In dot. This result confirms that we are 
dealing with a thin insulating layer extending over the whole surface 
of the crystal rather than with a barrier under the indium dot, such 
as a Schottky barrier. 

Trapping Effects 

When a positive ("forward") bias is applied to the i -region of Fig. 9, 

the barrier to electrons at the i -n transition is retained, as shown in 
Fig. 10; now, however, there appears also a trap for holes. When holes 
are trapped at this narrow interfacial layer, their space charge lowers 
the barrier and allows more electrons to flow from the n -layer to the 
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indium dot contact (much as at the floating base of an n -p -n transistor). 
With a negative ("reverse") bias across the i -n transition, only the 
saturation current can flow. Illuminating the diode with 3.3 eV light 
generates electron-hole pairs at the i -n transition. With a reverse bias 
of 60 V, the saturation current is increased by a photocurrent of 
1.6 µA; but with a 60-V forward bias, the optically excited holes that 
are trapped at the interface amplify the photocurrent to 2.8 µA. The 
spectral dependence of the photocurrent had the same shape for both 
polarities of bias (identical threshold), indicating that the mechanism 
of optical generation of carriers with an optical bias is due to the 
photoconductivity in the high -field region of the insulating layer, rather 
than to injection at the In contact. 

M 
77 

Fig. 10-Band structure of i -n transition with positive bias on i -region. 

The presence of traps is often manifested by slow rise and decay 
times for pulsed luminescence. In the present case, the insulating layer 
has an inherent RC time constant that is independent of trapping effects 
and that may dominate the measured response. It is evident from the 
model of Fig. 10, however, that trapping will occur only during forward 
bias, whereas a reverse bias will empty the traps. (Note that a 
sufficiently large reverse bias will cause breakdown luminescence.) A 

close examination of Fig. 11 reveals that forward -bias electrolumines- 
cence has slower rise and decay times than the RC -controlled reverse - 
bias luminescence. The decay of forward -bias luminescence was fol- 
lowed by expanding the scale of the displayed light intensity. The 
resulting data, plotted in Fig. 12, shows that after an initial decay with 
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Fig. 11-Time dependence of pulsed luminescence with forward and reverse 
bias applied across the i -n transition. 

a 2.4 -µsec time constant, the luminescence continues to decay with a 
14 -µsec time constant. The shorter time constant compares with the RC 
value of 4.5 -µsec obtained from the above measurements of resistance 
and capacitance. 

1000 

10 20 30 40 50 
t(Its) 

Fig. 12-Time dependence of luminescence decay after "forward" polar- 
ization. 
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Tentative Model 

From the data obtained thus far, it is possible to construct a tentative 
model for the distribution of states in the i -n diode as shown in Fig. 9. 

The energy gap of GaN is 3.5 eV. In the n -type region, the Fermi level 
is slightly above the conduction band edge (we have observed no carrier 
freeze -out at low temperature in n -type GaN). The major emission 
band at 2.37 eV would be due to transitions terminating at Zn acceptor 
levels (or other centers associated with zinc impurities) about 1.1 eV 
above the valence -band edge. However, the low -temperature emission 
spectra peaking at 2.85 eV suggest that the Zn acceptors (and asso- 
ciated centers) extend from about 0.7 eV above the valence band, thus 
forming an acceptor band at least 0.4 eV wide. The response time of 
electroluminescence seems limited mostly by the RC time constant of 
the device. 

Conclusion 

GaN shows promise as a suitable material for a blue or green electro - 
luminescent lamp. It is relatively easy to fabricate; the electrodes can 
be shaped into useful configurations, such as for alphanumeric displays. 
If ever p -type conducting GaN is obtained, it should be possible to make 
GaN injection lasers, since lasing in the n -type material has already 
been obtained by optical pumping.* 
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Mode Guiding In Symmetrical (AIGa)As-GaAs 
Heterojunction Lasers With Very Narrow 
Active Regions 

H. Kressel, J. K. Butler,* F. Z. Hawrylo, H. F. Lockwood, 
and M. Ettenberg 

RCA Laboratories, Princeton, N. J. 

Abstract-A theoretical and experimental study Is presented of double hetero- 
junction laser diodes in which the recombination region is so narrow 
that only the center of the wave is confined to the region of inverted 
population. Good agreement is demonstrated between theory and ex- 
periment based on a three-region-waveguide model. By use of a 

highly doped and closely compensated active region and small bandgap 
discontinuities at the heterojunctions, laser diodes have been made 
with very low room -temperature threshold and normal beam divergence. 

Introduction 

The refractive index discontinuities at (AlGa) As -GaAs heterojunctions 
improve mode guiding in the p -n junction region of laser diodes, which 
contributes to their greatly increased room temperature efficiency." 
Previous papers have dealt with the near- and far -field emission pat- 
terns of diodes incorporating either one' or two heterojunctions" 
confining the radiation to an active region with a thickness of about 
1 µm or more. The present paper extends the previous work to diodes 
where the active "waveguide" region is a small fraction of a micro- 
meter thick. Here only the center of the wavefront is within the narrow 
recombination region, and a significant fraction of the electric field 
intensity propagates in the lower -refractive -index passive material 
adjoining the active region. Good agreement is demonstrated between 
simple waveguide theory and experiment. Of technological interest is 

* Presently at Electronic Sciences Center, Southern Methodist Uni- 
versity, Dallas, Texas 75222 
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the fact that the lasers described here combine the features of very 
low threshold, high efficiency, and relatively narrow beam. The present 
work was suggested by the theoretical modeling of the laser cavity as a 
three -slab structure of sufficient simplicity'' to permit detailed calcula- 
tion of the performance but enough complexity to describe subtle 
variations in the processing. This paper describes a study of the effect 
of the material parameters and the optimization of the device for good 
threshold and normal beam width. 

EXPERIMENT 

\ CALCULATED 
An005 

/ \ 

_._1__L L i 1 1---J6 
-0.5 0 0.5 1.0 

DISTANCE Iµm) 

Fig. 1-Schematic of the basic heterojunction configuration showing the 
theoretically calculated and experimentally observed near -field in- 
tensity distribution. The experimental intensity distribution was 
determined from a densitometer trace. The calculated intensity 
distribution is based on a refractive index discontinuity án = 0.05 
at the (AIGa)As-GaAs heterojunction interfaces. 

Device Description 

The diodes were fabricated by liquid -phase epitaxial growth in a 
multi -bin apparatus, originally described by Nelson,' in which a GaAs 
wafer is pushed sequentially into adjacent bins containing appropriate 
melts, while the furnace is slowly cooled from -880°C. 

A schematic of the diode structure studied here is shown in Fig. 1 

(top) . The thin GaAs recombination (active) region 2 (d = 0.25 µm 
in the case shown) is closely compensated with Si and Zn to a total 
concentration of -1019 cm -3 and a hole concentration of 2-5 x 1017 

cm -3 as determined from capacitance-voltage measurements. The 
difference in the bandgap energy between region 2 and the adjoining 
regions 1 and 3 is 0.1-0.15 eV as estimated from photoluminescence 
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measurements. The free -carrier concentration in both regions 1 and 3 

is approximately 2 x 1018 cm -3 (doped with Zn and Te, respectively). 

Results and Analysis 

1. Near- and Far -Field Patterns 

The electric field intensity in the near field was determined from 
densitometer traces. As shown in Fig. 1, the electric field intensity 
extends significantly beyond the borders of the very narrow recombina- 
tion region 2 in which the p+ -p potential barrier helps to confine the 
carriers.'' Above threshold the field intensity is symmetrically dis- 

tributed about region 2 (Fig. 1), but below threshold the pattern is 

broader and less symmetrical, with a "tail" extending into the n side of 

the junctions. Owing to some uncertainty in focusing of the near -field 

image, the densitometer trace is probably broader than the true electric 
field distribution. 

The near -field intensity distribution shown in Fig. 1 is theoretically 
consistent with a symmetrical three-region-waveguide model in which 
the recombination region, of width d, is too narrow to fully confine the 
TE wave. It is known that guided wave propagation is theoretically 
impossible below a critical d value in an asymmetrical waveguide, 
but that this restriction is not present in a symmetrical dielectric 
structure.°-'° 

Based on a bandgap energy discontinuity AE, - 0.1-0.15 eV, a re- 
fractive index discontinuity An 0.05 is a reasonable estimate.' Fig. 1 

shows a calculated plot of the electric field intensity in the junction 
vicinity with On = 0.05 and d = 0.25 µm and assuming an abrupt inter- 
face. The extent of the calculated field distribution is somewhat smaller 
than the experimental densitometer trace, which may be due to the 
focusing uncertainty mentioned earlier. 

A more reliable comparison of waveguide theory and experiment is 
obtained by comparing the far -field emission pattern where the experi- 
mental measurements are more precise. The far -field emission pattern 
of the same laser is shown in Fig. 2. The electric field is strongly 
polarized parallel to the junction (TE wave). A single peak is seen in 
the direction perpendicular to the plane of the junction with a half - 
intensity width Op = 21°. This value is similar to that seen in typical 
single heterojunction "close -confined" (SH-CC) lasers operating in the 
fundamental transverse cavity mode.' However, the 300°K threshold 
current density of the present lasers is much lower than that of 
state-of-the-art SH-CC lasers (8000-10,000 A/cm').'." Fig. 2 shows the 
satisfactory agreement of the calculated with the observed far -field 
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Fig. 2-Experimental and theoretical far -field intensity distribution in the 
direction perpendicular to the junction plane. The theoretical curve 
is based on On = 0.05 and d = 0.25 µm. 

emission pattern using An = 0.05 and d = 0.25 µm. Thus, we conclude 
that mode guiding in narrow -active -region lasers can be satisfactorily 
explained on the basis of a simple three-region-waveguide model. 

The far -field beamwidth Op decreases with decreasing cavity thick- 
ness d for a given refractive index difference An as shown in the 
theoretical curve of Fig. 3. For example, with An = 0.05, the calculated 
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Fig. 3-Theoretical beamwidth O between the half -power points in the 
direction perpendicular to the junction plane as a function of the 
active region thickness d with On = 0.05. 
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beamwidth Bp = 30° for d = 0.7 µm. For this d value, the fundamental 
transverse order mode is still favored; for larger d, the calculated 
previously.' The gain coefficient in the lasers described here is linearly 
dependent upon the current density, so that 

2. Threshold and Efficiency 

Threshold current densities as low as 1400 A/cm2 and differential 
quantum efficiencies of 30-50% were obtained at 300CK with lasers 
having Op- 20°. This threshold is comparable to those previously re- 
ported for double heterojunction lasers with larger bandgap discon- 
tinuities (i.e., stronger radiation confinement)12-35 and, consequently, 
larger beam divergence (>400).4 

Fig. 4(a) shows the threshold current density Jth as a function of 
the facet reflectivities R1 and R2, which were varied with SiO films of 
appropriate thickness. The reflectivities were calculated as described 
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Fig. 4(a) Threshold current density at 300°K as a function of the Fabry- 
Perot cavity end loss, (1/L) In (1/R,R_), of a single diode. The 
facet reflectivity was varied with SiO coatings of various thickness. 
(b) Differential quantum efficiency as a function of the reciprocal 
cavity end loss of the same diode described in (a). 

RCA Review Vol. 32 September 1971 397 



previously." The gain coefficient in the lasers described here is linearly 
dependent upon the current density, so that 

Jth- 
1 1 1 

(C7+ 111 [1] 
p 2L R1R2 

or 

1 1 1+-]n 
2L« R1R2 

where L is the Fabry-Perot cavity length, a = 15 cm -1, /3 = 2.1 X 10-2 
cm/A, and J (i.e., the extrapolated value for no end losses) is 750 

A/cm2. It was not possible to fit the data by assuming that Jth « guilt() 

with b > 1, where gth is the gain coefficient at threshold. 

As shown in Fig. 3b, the same a of 15 cm -1 provides a reasonable 
fit to the variation of the differential quantum efficiency ''le., of the same 
laser as a function of reflectivity using the equation 

'le:t = 

ln 
1 

R1R2 

1 

«L+In 
R1R2 

with an assumed internal quantum efficiency ,li = 0.55. 

[2] 

Because the lasing energy is less than the bandgap energy in the 
(AlGa)As regions adjoining the cavity, the radiation is only weakly 
absorbed there (mainly by free carriers). 

We now consider the dependence of the threshold current density on 

the cavity width d. Increasing d increases the fraction of the wave 
inside the recombination region, thus increasing the gain at a fixed 
density of injected carriers; however, maintaining the density in the 
wider recombination region requires a higher current density. Conse- 
quently, for a given value of An there is a width d that minimizes Jth 

The gain coefficient at threshold, gth, is plotted in Fig. 5 as a func- 
tion of d. The curve was calculated for an absorption coefficient of 
15 cm -1 in the (AIGa)As p -region and 7.5 cm -1 in the (AIGa)As 
n -region. Also shown in Fig. 4 is the propagation constant of the 

398 RCA Review Vol. 32 September 1971 



LASER DIODES 

fundamental mode normalized to the free -space wave number ko = 2,r/Ao 
(X, is the free -space wavelength). Note that as d decreases, the 
propagation constant decreases and approaches the index of refraction 
of the outer p- and n -regions. This is because the wave is extending 
more into the outer regions. Since these regions are lossy, the gain at 
threshold has to be increased as d is narrowed. In the limiting case, we 
find that as d-> 0, 

ap + an 
9th afc , [3] 

8n.nk 2d2 

where ap and a are the free -carrier absorption coefficients in the p- and 
n- (AIGa)As regions, respectively; n = 3.6 and a,0 is the free -carrier 
absorption coefficient of the active region. 

120 

80 

E 

u-Ao 
Vf 
O - J 

¢ 
W 

Ú2O 
W 
1116 
4 
N 

12 
J 
z 
á 
cº 

8 

0.2 0.4 

d-CAVITY WIDTH (,.m) 
0.6 

IJ 

4 a 

cc 

W 
W 

O 
r 
O 

:/ 
2 
¢ 
z 
Y- 

3.58 á 
H 
N 
z 
O 
u 

357 z 
0 

a 
cº 

3.56 ó 
Cr 
O. 

3.55 

Fig. 5-The threshold gain coefficient, g,,, for an infinite -length cavity and 
normalized propagation constant plotted as a function of a cavity 
width. The index discontinuity was held constant (An = 0.055) for 
all calculations. The absorption coefficient values in the p- and n- 
(A1Ga)As regions adjoining the active region were 15 cm -1 and 
7.5 cm -1, respectively. 
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As d approaches zero, ge, tends to infinity as d-2. If we assume that 
Jth « dgth, then Jo, --> d-1 in the limit of d small. On the other hand, 
for d large, gth -> af0; and hence, Jth « dt,c. Fig. 6 shows the normal- 
ized threshold current density plotted as a function of d. We have 

0.2 0.4 0.6 0.8 1.0 

d -CAVITY WIDTH (pm) 

Fig. 6-The threshold current density J,,, plotted as a function of the active 
region width d where we have normalized Jth to the threshold 
current density Jo for d =1 um with all other internal parameters 
held constant. The form of the current density is given as Jt,, 
= Jod (aro + gt,,) / (are + g,ha) where gtho is the threshold gain for 
d= 1 pm. The quantity g,h is plotted in Fig. 5. 

assumed that the active region is fully inverted and that only the 
fundamental mode is propagating. A value of d = 0.2-0.3 µm leads to 
the minimum in J,,, with .In = 0.05. A smaller d decreases Op (Fig. 3), 
but at the expense of increased Jth. 

Conclusions 

The near- and far -field emission patterns of (AlGa) As -GaAs hetero- 
junction laser diodes with guiding regions so narrow that only the 
center of the wave is confined to the inverted region are consistent 
with the predictions of three-region-waveguide model. It is shown 
that with an appropriate combination of doping, of discontinuity in 
refractive index, and of thickness of the active layer, heterojunction 
lasers can be made that combine low threshold current densities (1400- 
2500 A/cm2 at room temperature), high differential quantum efficiencies 
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(30-50%), and reasonable beam -width perpendicular to the junction 
(-200). This angular divergence is half that of previous double 

heterojunction lasers with similar threshold current densities. Devices 
of this design are of potential interest in applications requiring low 

power output at very high duty cycles. Similar lasers with the junction 
very close to a copper heat sink (within -5 µm) have operated continu- 
ously at room temperature with a power output of 120 mW and a power 
efficiency of -7%. With improved metallic contacts and heat sink, 
higher values are possible. 
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Clutter Suppression by Use of Weighted Pulse Trains 

T. Murakami and R. S. Johnson 
RCA Missile and Surface Radar Division, Moorestown, N.J. 

Summary-Use of amplitude weighting of unequally spaced pulses is studied to 
determine the improvement in clutter performance that can be obtained 
in a coherent radar. A computer program that gives the optimum 
weights and the signal -to -clutter gain as a function of Doppler frequency 
has been developed. The effect of thermal noise and limiting have also 
been included in the program, which has a capacity of weighting up to 
20 pulses. This study has shown the following: (1) With optimally 
weighted nonperiodic pulse trains, high clutter attenuation can be ob- 
tained over a large Doppler interval. (2) Signal -to -clutter gain obtained 
with optimum weighting is substantially greater than that obtained with 
binomial weights. (3) Conditions of low signal-to-noise ratio or i -f 
limiting restrict the benefits of optimized pulse weighting. 

Introduction 

Certain aspects of the performance characteristics of MTI (Moving 
Target Indication) radar using delay -line cancellers' -3 to reject the 
clutter echoes and pass Doppler -shifted signals from moving targets 
are considered here. One advantage of the delay -line canceller type of 
clutter -rejection system is that range information is preserved without 
the use of range gates, thus making the radar much simpler for 
some applications than a range -gate Doppler -filtered system. The 
chief limitation of the canceller type of MTI radar in the past has 
been the complexity required to achieve the special transfer character- 
istics required and the need for nearly perfect adjustment in the 
delay lines to obtain near theoretical performance. With the advent of 
microelectronics and digital techniques, these difficulties have been 

t This paper is extracted from T. Murakami's Doctoral Thesis for the 
University of Pennsylvania (see Ref. [14] ). 
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alleviated to a large extent, so that the performance of the canceller 
type of system can be greatly improved. 

The intent of this study is to determine the theoretical clutter 
performance of a coherent radar using a particular type of delay -line 
cancelling system. In the system considered, the pulses are staggered 
in repetition period to avoid target blind speeds and the pulses are 
amplitude weighted in an optimum way to achieve high clutter cancel- 
lation over the Doppler region of interest. The use of optimally 
weighted pulse trains for clutter suppression in the past has been 
mostly confined to finite pulse trains with uniform periods.' Brennan 
and Reed' analyzed optimum processing of unequally spaced radar 
pulse trains for clutter rejection but only indicated how one might 
proceed to solve the problem. 

A portion of the analysis given here is not original and can be 
found in the references cited. It is given for completeness and to aid 
in the understanding of the extensions made in the study. The main 
contribution of this study is a means to determine an optimum pulse 
spacing combined with a method of determining the optimum pulse 
weights for the specified train of pulses that results in good clutter - 
rejection performance. The signal -to -clutter gain performance is also 
provided as part of the output of the computer program that was 
developed. Effects of thermal -type noise and limiting on the perform- 
ance can also be found through the use of this computer program.» 

The main items in this paper in the order of study are: 
[1] System response of a delay -line canceller is determined. 
[2] Signal -to -clutter gain is defined and then found for the delay - 
line canceller. 
[3] The method for determining the optimum pulse weights based 
on Gaussian -type clutter is explained. 
[4] A method for choosing the interpulse spacings is developed. 
[5] The calculated results are explained. 

In the analysis, the pulse spacing to achieve acceptable Doppler 
response is determined by a graphical method, and the corresponding 
pulse -amplitude weights are found by maximizing the function repre- 
senting the average signal -to -clutter gain produced in the processor. 
Pulse -amplitude weighting procedures applied to equally spaced pulses 
show that optimum weighting results in about a 3 -dB advantage over 
the binomial weighting normally associated with cascaded single -delay- 

* A copy of the computer programs is available from the authors on 
request. 
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line cancellers.' This study shows that the gain difference between opti- 
mum and binomial weighting of staggered pulse trains can be consider- 
ably greater than 3 -dB. The improvement obtained is shown to be a 
function of the spectral spread of clutter and the number of pulses used. 

INPUT 

TIMING 

T2 
TA --I a4 I-- 

O,, WEIGHT ON nTH PULSE 

Tr, . DELAY OF nTH SECTION OF LINE 

Fig. 1-Delay-line canceller. 

System Response of Delay -Line Canceller 

O 

3 

OUTPUT 

In this section, the system response of a delay -line canceller for a 
coherent pulsed radar using amplitude weights and staggered pulses 
is developed. Fig. 1 shows a block diagram of the delay -line canceller 
analyzed, where a is the amplitude weight of the nth pulse and r 
corresponds to the delay of the nth section of line. These delays match 
the interpulse periods of the finite pulse train. 

If an impulse 8(t) is applied at the input, the response of the delay - 
line canceller will be 

h(t) =aDS(t) +a1S(t-Ti) +a28(t-Tl-T2) 
- a38(t - 71 - 12 - T3) + . . . 

aV-18 (t - Tl - T2 - . . . TN -1) 

N-1 
= akS(t-tk), 

k=0 
[1] 
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CLUTTER SUPPRESSION 

where tk = r1 + r2 + + rk and N is the number of pulses. The cor- 
responding voltage transfer function H(w), found by taking the 
Fourier transform of Eq. [1], is given by 

N-1 
H(w) = E ak exp {-Mk) 

k=o 
[2] 

The power transfer function P(w) for the N -pulse canceller is then 

2 P(w> = I H(w> I 

V-1 2 

E al cos wti -1- E 
i=o 

a; sin wti 

N-1 V-1 
= E E aia; cos w(t;-ti). 

i=o 
[3] 

If the system response to a stationary target (w = 0) is zero, the a's 
are such that 

N-1 r-1 E E aiaf = O. 
i ---o i=o 

[4] 

N-1 
Dividing Eq. [3] by E ai2 gives the normalized power transfer func- 

i o 

tion for the N -pulse delay -line canceller; thus 

P(w) = 

.V-1 N-1 E E a;a; cos w(t; - ti) 
i=o i-o 

N-1 
Eai2 
iao 

[5] 

where the bar under the P denotes the normalized quantity. The 
N-1 

quantity E ai2 is the canceller power gain for band -limited white 
i=o 

noise.' This can be shown as follows. Let the input noise voltage be 
denoted by Ni(t) so that the output noise voltage No(t) can be ex- 
pressed as 
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1 

No(t) = aN,(t - t;) [6] 
t=o 

The average power output is then 

N-1 N-1 
t) Nó = E E a;akN;(t - ti)Ni(t - tk) 

j=0 k0 

N-1 
= Nt2(t) ak2, 

k=0 
[7] 

which shows the stated relationship. 
To determine the relationship between the amplitude weights for 

the canceller shown in Fig. 1 and those for N cascaded single -delay -line 
cancellers of the constant-prf type, the system response for the latter 
is derived. A block diagram for a single canceller is shown in Fig. 2. 

INPUT 

DELAY. T 

OUTPUT 

Fig. 2-Block diagram of single -delay -line canceller. 

The impulse response for this canceller is simply 

h(t)=S(t)-6(t-r), 
and the corresponding transfer function is 

H(w) = 1 - exp {-jwr}. 

[8] 

[9] 

When N such stages are cascaded, the overall response for the constant- 
prf case becomes 

H(w) = (1 - exp {-jwr})N 

= 1 - ( N exp {-jwr} + (2) exp {-j2wr} - 
( 3 ) exp {-j3wr} + + (-1)k ( k exp (-jkwr) 

+ (-1)N exp {-jNwr}, [10] 
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CLUTTER SUPPRESSION 

where 

N(N-1)(N-2) (N -k 1) 

1.2.3k 
This shows that the weights a in Eq. [1] and Fig. 1 are the binomial 
coefficients for the periodic pulse train. 

Signal -to -Clutter Gain and Subclutter Visibility 

The signal -to -clutter gain G(o)d) of a clutter canceller is defined as 

output signal -to -clutter power ratio 
G(wd) = [11] 

input signal -to -clutter power ratio 

Subclutter visibility of a radar is the average of this quantity over a 
given range of Doppler frequencies. Although G (w) has been pre- 
viously derived for the delay -line canceller,''° it is developed here 
for clarity and completeness. 

For the N -pulse canceller, the output voltage Eo(t) is the weighted 
sum of N pulse returns. Thus 

N-1 
Eo(t) = E afE(tj), [12] 

i=o 

where a, is the amplitude weight on the jth pulse. E(t1) is the voltage 
of the jth pulse consisting of signal and noise components where ti 
denotes the time, t - t1. E(t)) can be expressed in the form 

where 

E(t1) = VS cos (,dt! -I- ') + C(t1), [13] 

S = signal power (into unit resistor) 

(ad = angular doppler frequency 

= arbitrary signal phase 

C = clutter power (into unit resistor) 

The average power output from the canceller is given by 

RCA Review Vol. 32 September 1971 407 



N-1 É 2z = f a;E ( t¿) l f 1 ajE (ti) l, 
l ,_o J L f=o 

[14] 

where the bar over the quantity denotes its expected value. Expanding 
the right-hand member of Eq. [14], assuming that the signal and 
clutter are independent, results in the output power, 

N-1 N-1 É 2 = 2S E E a;a, cos Goat{ + cos (wdt, + ih) 

[15] 

N-1 N-1 
+ E E aia C(t.{) VG (ti) 

i=0 1=0 

N-1 N-`1 N[-1 N-1 
=S [ 

L. a¿a; Cos wd(t; - ti) +C [ 
aiafp (t; - ti) I 

i=0 1=0 i=0 i=0 

where p(t) is the clutter autocorrelation function normalized so that 
p(0) = 1. From Eq. [15], the output signal -to -clutter ratio for the 
N -pulse canceller can be expressed as 

N-- 1 1 T 

S E E aia; cos (ild(t; - ti) 

i-°_ v 1 i 1 

C E E a¿aip(t - t¿) 
i=o /=0 

The corresponding signal -to -clutter gain becomes 

N-1 V-1 E E aia; cos trld(t; - ti) 
(S/C)o ti=0 i=0 

G(u)d) = _ 
(S/C) N-1 N-1 E E aiaip(t; - ti) 

i=0 i=0 

[16] 

[17] 

The average value of G((d) with respect to doppler frequency is 

found by rewriting Eq. [17] as 
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CLUTTER SUPPRESSION 

N-1 N-1 N-2 E ai2 + E aiai cos wd(ti - ti) 
f=0 

ix f 

G(wd) = [18] 
N[-1 N-1 E aiaip(tj - tí) 
i=0 f=0 

Since the second term in the numerator of Eq. [18] averages to zero, 
the average value of G(wd) is given by 

N-1 E ai2 

i=o 

G = [19] 
N-1 N-1 E E atajp(tj - ti) 
i=0 i=0 

Using G as given by Eq. [19] and the system gain P(w) as defined in 
Eq. [5], the signal -to -clutter gain G(wd) can be written as 

G(wd) = G P(wd) 

N[[-`1 N-"1 N-1 
L at2 

L 
[[ E ai4i cos wd (t - ti) 

1=0 1=0 1=0 

N-1 N-1 E E aiaip(tf ti) 
i o j=0 

N-1 
E a12 
i=0 

[20] 

Thus G(wd) is expressed in terms of a quantity G that is independent 
of target velocity and another quantity P(wd) that is independent of 
the clutter characteristics. The quantity G is called the reference gain 
and is seen to depend on the amplitude weights ai, the clutter correlation 
function p(r) and the number of pulses, N. 

Reference Gain for Periodic Pulse Train 

Assuming a periodic pulse train and binomial amplitude weighting, the 
reference gain G will be calculated for use as a measure of perform - 

RCA Review Vol. 32 September 1971 409 



ance. For the above conditions, the reference gain can be expressed by 

where 

G= 
M E E a;afP[(9 - k)TJ 

{=o f=o 

M=N -1 
N = number of pulses 

a;=(-1)' j 
M/ 

T = period of pulse train. 

Eq. [21] can be rewritten as 

G= 

/.4,!\2 

[211 

k 

p(0) (-1);+k (M) 
( k 

) p[(7 - k)T1 

fmk \ 
1 

[221 
v (M!)2( -1)k 

1 + 2 p(kT) 
k=i (M+k)!(M-k)! 

Eq. [22] is derived through use of the relations 

and 

n 
/\/2n 

(2n)! 

L[ 
J=0 (5) `n ) (n)2 

(2n) ! n-p 
) 

(kr P+lc/ (n-n)! (n+P)! 
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CLUTTER SUPPRESSION 

In the case of Gaussian clutter, the autocorrelation function is 

p(r) = exp (-271.20-272), [23] 

where a is the standard deviation of the clutter spectrum. A tabulation 
of the reference gain is shown in Table 1 as a function of the spectral 
spreading factor aT. The corresponding plot of this data is shown in 
Fig. 3. 

30 

BO 
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m 
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60 
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W 
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40 
u 

30 

20 

10 

O I I 1 1 

0 .02 .04 .06 .08 .10 

CLUTTER SPECTRAL SPREAD, oT 
.12 

SIGNAL -TO -CLUTTER GAIN WITH PERIODIC BINOMIALLY 
WEIGHTED PULSES 

Fig. 3-Signal-to-clutter gain with periodic binomially weighted pulses. 

Optimum Pulse Weights 

The criteria used to determine the optimum set of weights for a given 
number of pulses is that which maximizes the reference gain for a 
specified clutter model. Maximization of the reference gain expressed 
by Eq. [19] is obtained by minimizing the denominator with respect 
to a; under the constraint that the numerator Zat2 is a constant. Using 
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CLUTTER SUPPRESSION 

the method of Lagrangian multipliers, the quantity 

E N-1 N-1 N-1 
- E E alaiP(ti - t,) -.l L 

i=o i=o i=0 
[24] 

is formed, where A is the Lagrangian multiplier. Differentiation of 

Eq. [24] with respect to a; results in the following condition for an 

extremum: 

995 N-1 
= 2 E aip(ti - ti) - 2Aa; = 0, 

8a, i=o 

where i=0, 1,2,N-1. 
The condition for a minimum of ¢ is then10 

Dk = 

100 fol fo2 fok 

110 111 112 flk 
120 f21 122 121 

fk0 fk1 fk2 ' fkk 

[25] 

> 0 [26] 

where fqi = a24/aaiaai, for 0 k < N - 2, and DN_1 may equal zero.'° 

Eqs. [25] possess a nontrivial solution for the set of al if 

P(0) - 
P(t0 - t1) 
P(to - t2) 

p(tl - to) 

p(0) - 
p(t1 - t2) 

p(t2 - to) . . . 

p(t2-t1)... 
P(0) -a ... 

PUN -1 
PUN -1 
PUN -1 

- t0) 
- t1) 
- tQ) 

P(t0 - ty_1) p(tl - ty_1) p(0) -A 

= Co. 

[27] 

The values of A that satisfy the above determinental equation are the 

eigenvalues of the clutter covariance matrix R. 

R = [P(ti - ti) ] [28] 

That the resultant reference gain G is equal to the reciprocal of the 

smallest eigenvalue of the coy ariance matrix can be seen from the 
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following.' Let the reference gain be expressed as 

G= 

N-1 
Ea,- 9 

;=o 

N-1 N-1 
E E a,a,p(tf - t{) 

A'A 

A'RA 
[29] 

where A is the column matrix (at) and A' its transpose. Since the 
covariance matrix satisfies the relationship 

RA = AA, [30] 

from Eq. [29], the reference gain is 

A'A 
G = = 1/A. [31] 

A'AA 

Then the optimum set of weights (a{) is any eigenvector corresponding 
to the minimum eigenvalue A. 

Use was made of a subroutine within the main computer program 
to determine the minimum eigenvalue A. The numerical procedure, 
known as the "power method," produces the largest eigenvalue and a 
corresponding eigenvector by iteration." Hence, to use this method, it 
is necessary to rewrite Eq. [30] as 

or 

A = AR -1A, 

MA = kA, [32] 

where M = R-1 and k = 1/A. Thus the eigenvalue k corresponds to the 
reference gain G. 

Although the signal -to -clutter gain and reference gain given by 
Eqs. [17] and [19], respectively, were developed considering signal 
and clutter only, the effects of thermal noise can also be taken into 
account with the inclusion of the noise autocorrelation function. Thus 
Eq. [17] for the signal -to -clutter gain with noise included becomes 
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CLUTTER SUPPRESSION 

N-1 N[-`1 [r L L.. a;aj COS uod(tj - ti) 
i 0 ;=0 

G(od) = [33] 
N-1 N-1 No 
E E aiaj«IPc(t;-ti) -}--pN(tj- ti) 1 
1=0 i=0 C 

and the corresponding reference gain (Eq. [19]) becomes 

N-1 E ai2 

;=o 

G = 
l 

[34] 
N -1V-1 No E E aiaj Pe(tj - t;) + - pN (t - ti) 
1=0 J=o 

where p0() = clutter autocorrelation function 

pN( ) = noise autocorrelation function 

No/C = noise -to -clutter power ratio 

If band -limited white noise is assumed, the correlation function is 

sin 713 (t1 - ti) 
PN(tj - ti) = 

aB (ti - tt) [35] 

where B is the video bandwidth. For the pulse spacings normally used, 
B (ti - ti) will be large for all values of ti - ti except for j = i, so that 
the correlation function can be approximated by 

pN (t - ti) = Sip [36] 

where Stj is the Kronecker delta (Si, = 1 when i = j and So = 0 when 
i j). Thus the ratio No/C will be added to the diagonal elements of 
the autocorrelation matrix so that the reference gain can be written as 

N-1 
Eai2 
i=0 

G= 
N-1 N-1 NoN-1 
E aiajPe(t; - ti) + -E ai2 
i=o j=0 C ;so 
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or 

G' 

V = 
1 G 

[37] 

where (i' is the signal -to -clutter power gain without thermal noise. 
A plot of Eq. [37] is shown in Fig. 4, where the overall reference 
gain G has been plotted as a function of the noise -to -clutter ratio and 
the reference gain with no noise. 
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Fig. 4-Signal-to-clutter gain with band -limited white noise. 

60 

Choice of Interpulse Spacings 

With a staggered-prf system, there is the problem of determining a 
set of interpulse spacings that result in no blind speeds over a given 
Doppler interval. The first blind speed occurs when the interpulse 
periods T1, T2, TN as shown in Fig. 5, satisfy the equalities 

i/T1=j/T2=k/T3= n/TN, [38] 

where i, j, k, n are integers. 
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[2] On the design chart draw the vertical lines T = 1, T2/T1, 
T3/Ti, etc. (k = 1). 

[3] The periods T{ are chosen so that all T. do not intersect the 
sloping lines at integer values on the ordinate scale, aT. 

[4] The sloping lines correspond to the normalized frequency at 
which the blind speeds will occur. The normalizing factor is the 
reciprocal of the scale factor on T. (If T = 1 corresponds to one 
millisecond, multiply the factor a by 1000.) 

[5] As an example, consider the normalized periods T = 1.0, 1.2 

(assume T in msec, see Fig. 6). The vertical lines T = 1, T = 1.2 
will intersect the sloping line a = 5 at the integer values aT = 5 

and aT = 6. For this case, the first blind speed will correspond 
to a Doppler frequency of 5000 Hz. When T = 1.0, 1.2, and 1.1 

(T in msec), the first blind speed will occur at 10,000 Hz where 
all three periods have an integer multiple, aT = 10, 12, and 11. 

Partial nulls or holes will occur in the Doppler frequency response 
as calculated by use of Eq. [17] when the values, aTk, are nearly 
integers. In this case, the periods can be slightly shifted to obtain a 
smoother frequency response without the partial nulls. 

Calculated Results 

Uniform Period Pulse Train 

The signal -to -clutter gain has been calculated for periodic pulse trains 
of three, four, and five pulses using binomial amplitude weighting. 
Results of these calculations are shown in Fig. 7 for pulses that are 
spaced by one millisecond and correspond to responses obtained by 
cascading N - 1 (N = 3, 4, 5) single -delay -line cancellers. Values of 
the clutter standard deviation (bandwidth), a, of 15 Hz and a carrier 
frequency of 1300 MHz were used in the calculations. This value of o 

corresponds to rain -cloud clutter. 
Fig. 8 shows curves of signal -to -clutter gain when optimized weights 

are used for the uniformly spaced pulse train. The amplitude weights 
obtained from the solution of Eq. [27] for the minimum A is shown 
in Table 2. A Gaussian clutter autocorrelation function of the form 

Table 2-Optimum Weights for Periodic Pulse Train 

N a1 a, a. 

3 1.00000 -1.99119 1.00000 
4 1.00000 -2.97363 2.97363 -1.00000 
5 1.00000 -3.94740 5.89504 -3.94740 1.00000 
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Fig. 7-Signal-to-clutter gain for uniformly spaced pulses using binomial 
weighting. 
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given by Eq. [23] has been used in the calculations The amplitude 

weights given in Table 2 are seen to be very nearly equal to the 
binomial coefficients. It is noted that the improvement obtained in the 

signal -to -clutter gain by use of optimum weighting over the normal 

binomially weighted case is relatively small. 

Staggered Pulse Train 

The signal -to -clutter gain characteristic for a typical 3 -pulse train with 
prf stagger and optimized weighting is shown in Fig. 9. Blind speeds 

occur at velocities corresponding to frequencies that are multiples of 
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Fig. 9-Signal-to-clutter gain with prf stagger and optimized pulse weight- 
ing, N = 3. 

5 kHz for the particular set of spacings that were used for the pulses. 
The average gain obtained is seen to be very nearly that for the 
constant-prf case with binomial weighting. With binomial weighting 
applied to this case, the shape of the Doppler response will be about 
the same as in Fig. 9, but the average gain will be reduced by ap- 
proximately 5 dB. 

A similar curve is shown in Fig. 10 for the four -pulse staggered-prf 
case with optimum weighting of the pulses. Here, the time spacing 
of the additional pulse was chosen to eliminate the 5 kHz Doppler null 
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that occurred in the three -pulse response of Fig. 9. Use of binomial 
weighting with the prf's chosen for the four -pulse case results in a 
reference gain of 43 dB. 
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Fig. 10-Signal-to-clutter gain with prf stagger and optimized pulse 
weighting, N = 4. 

A typical example of signal -to -clutter gain using five staggered 
pulses with optimized weighting is shown in Fig. 11. Using these 
spacings and binomial weighting, the reference gain drops to 72.5 dB. 
With such high average signal -to -clutter gains, effects such as noise 
and system stability become important. Figs. 9 to 11 show typical 
signal -to -clutter gain characteristics for the three-, four- and five -pulse 
cases. 

The optimum weights for a given set of pulse spacings vary some- 
what with the spectral width of the clutter. Fig. 12 shows the average 
signal -to -clutter gain obtained with optimum weighting of a four -pulse 
train as a function of the standard deviation of the clutter spectrum. 
As shown in Table 3, the optimum weights do not vary significantly 
over the range of clutter widths used. A curve of the average gain 
obtained using the optimum weights for a = 15 Hz and shown in Fig. 
12 indicates that, except for narrow clutter spectra, a fixed set of 
weights can be used to obtain near optimum performance. 
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Table 3-Optimum Amplitude Weights as Functions of Clutter Spectral 
Width (N = 4, f.= 1300 MHz) 

Clutter 
Spectral 
Width, a 

(Hz) ao a1 a, as 

5 1.0000 -2.6275 2.4970 -.8696 
10 1.0000 -2.6186 2.4881 -.8696 
15 1.0000 -2.6039 2.4735 -.8696 
20 1.0000 -2.5837 2.4533 -.8696 
25 1.0000 -2.5583 2.4279 -.8695 
30 1.0000 -.5280 2.3976 -.8695 

There will be variations in the optimum reference gain as different 
pulse spacings are chosen for a given number of pulses. A comparison 
of the reference gains for optimumly weighted cases indicates gain 
differences of as much as 7 dB for the four- and five -pulse cancelling 
systems. Fig. 13 shows the average or reference gain that might be 

2 3 4 5 6 
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SIGNAL -TO -CLUTTER GAIN WITH PRF STAGGER 
AND PULSE WEIGHTING 

7 

Fig. 13-Signal-to-clutter gain with prf stagger and pulse weighting. 
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expected with prf staggering and pulse amplitude weighting as a 

function of the number of pulses and the uT product for both optimum 
and binomial weighting. 

Calculated Results Including Noise 

The effect of sources of noise other than clutter is to add a bias term 
to the denominator of the function representing the signal -to -clutter 
gain. As shown in Fig. 4, this bias term is a constant for a given 
thermal noise level and limits the maximum available signal -to -clutter 
gain. If white noise is assumed, the signal -to -clutter gain characteristic 
with noise plus clutter will have a shape with respect to frequency 
similar to that for the case with clutter alone. It is found that the 
minimum eigenvalue, A, is unaffected by the presence of the No/C bias 
term in the autocorrelation function, so that the pulse weights for the 
case where there is thermal noise are the same as for the case without 
thermal noise.» Figs. 14 and 15 show the signal -to -clutter gain char- 
acteristics for the four -pulse canceller with noise -to -clutter ratios of 
-40 and -60 dB, respectively. In these figures, the average gains as 
obtained with binomial weighting are also shown. 

Effect of Limiting on Signal -to -Clutter Gain 

The effect of a limiter prior to clutter cancellation is to reduce the 
signal -to -clutter gain from the value obtainable without limiting. To 
show the reduced clutter gain for optimized and binomial type of pulse 
weights, a clutter correlation function with limiting was implemented 
in the computer program. The following assumptions have been made 
in the formulation of the clutter correlation function: 

[1] Error function type of limiter, 
[2] Ideal band-pass filter with no response to harmonics outside 
the intermediate frequency band, 

[3] Gaussian input clutter. 
With these assumptions, the clutter correlation function can be ex- 
pressed as12" 

- 
1 , [(2n) !]2 exp (-2(2n -I- 1)71-2(727-2)) 

Pc(T) -E 
A n-p 24n(n1)3(n+1)I 2 2n-1 

1 -1- - 
x2 7r 

[39] 
Note that the reference gain in this case is 1/[X (No/C)], rather 

than 1/X. 
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where 

limit level 
a = 

v/clutter input power 

1 

A =sin-r 
2 

1 + - xz 

J 7r 

with a and r as defined in Eq. [23]. Using the set of optimized weights 
indicated in Fig. 10, the signal -to -clutter gain with limited clutter has 
been calculated. The general shape of the response function is as 
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Fig. 16-Effect of limiting on signal -to -clutter gain for N = 4. 

40 

shown in Fig. 10 with a reduced average gain. A plot of the average 
gain as a function of limit level is shown in Fig. 16. Gain curves 
obtained with optimized and binomial weights are shown in this figure 
for comparison purposes. For values of rms clutter to limit ratios in 
excess of 20 dB, the effect of optimization is nullified. The optimization 
of pulse weight used in the above computations was calculated on the 
basis of no limiting of the clutter. Determination of the optimum 
pulse weights for a specific limit level results in a small increase in 
the signal -to -clutter gain. For the case considered above, the amplitude 
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weights optimized for limited clutter are shown in Table 4 when the 
rms clutter to limit level is 20 dB. The resultant increase in average 
signal -to -clutter gain is 0.3 dB. 

Table 4-Optimized Pulse Weights With Limited Clutter (r = 15 Hz, f, 
= 1300 MHz) 

Parameter Limited Clutter 
x = -20 dB 

No Limiting 

a, 1.0000 1.0000 
Optimized a, -2.3770 -2.6039 

Weights a3 2.2074 2.4735 
a. -0.8293 -0.8696 

Average Signal -to- 30.4389 30.1376 
Clutter Gain 

Scaling of System Parameters 

Although the examples given in the computations used a carrier fre- 
quency of 1300 MHz, and a certain pulse spacing, these same results 
could be applied to other cases by proper scaling. Since the optimization 
process involves a clutter autocorrelation function of the form 

p(r) = exp {-27l2o.2r2}, [39] 

where r is a function of the interpulse period, the amplitude weights 
will remain unchanged. Also the signal -to -clutter response will have 
the same shape if the product QT, where T is the pulse period, is kept 
constant. Thus, if the pulse period is divided by a factor of three, 
o is tripled so that for the same type of clutter, the carrier and Doppler 
frequencies must also be tripled. 

Conclusions 

The study of weighted pulse trains for use with delay -line type of 
clutter cancellers has shown the following: 

[1] Use of optimally weighted nonperiodic pulse trains makes it 
possible to achieve high clutter attenuation over a relatively wide 
Doppler frequency interval. 
[2] The signal -to -clutter gain obtained with optimum pulse weights is 
substantially greater than that obtained with binomial weights when 
noise and/or limiting is excluded. 
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[3] The optimum pulse weights for a given set of interpulse spacings 
and clutter spectral width can be used over a relatively wide range of 
spectral widths around the design value. 
[4] Optimally weighted pulse trains for delay -line -type cancellers are 
most advantageous for use with systems that have wide dynamic range 
and are linear; under conditions of low signal-to-noise ratio or i -f 
limiting, the benefit of optimized pulse weighting is reduced. 
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Infrared Spectroscopic Method for Compositional 
Determination of Vapor -Deposited Borosilicate 
Glass Films and Results of Its Application 

Werner Kern 

RCA Laboratories, Princeton, N. J. 

Abstract-An Infrared analytical technique is described for rapidly and non- 
destructively determining the composition of binary borosilicate glass 
films chemically vapor deposited on silicon substrates. The principle of 
the method is based on a correlation of the absorbance ratio [B-01/ 
[Si -O] with the chemically determined composition of standard samples. 
The absorbance ratio is calculated from the measured B -O net absorb- 
ance maximum in the wavenumber region near 1370 cm-' and the SI -O 

absorbance maximum at the stretching vibration frequency near 1075 
cm -1. Glass films up to approximately 2.5 pm thickness can be an- 
alyzed. Thicker films up to about 7 um can be measured similarly by 

utilizing the net absorbance ratio of the less intense bands of B -O -Si 
at 917 cm-' and of Si -O at 800 cm -1. Applications of the method 
are discussed, including effects of reactor geometry on the composition 
of borosilicates, evidence of silicate formation during low -temperature 
vapor oxidation of hydrides, and the long-term stability of glass films. 
Changes in absorbance and wavelength positions of the infrared bands 
as a function of heat treatment, composition, glass densification, and 
film thickness are briefly discussed also. 

Introduction 

Vapor deposited films of botosilicate glasses prepared by a method 
previously described'-' have found extensive applications in silicon 

Editor's note: Parts of the information in this paper were presented 
at the Electrochemical Society Meeting in Boston, Massachusetts, May 1968 
(Paper No. 92) and in New York, N.Y., May 1969 (Paper No. RNP 372). 
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device technology.3-6 A convenient analytical technique for monitoring 
these film compositions is therefore of considerable practical importance. 

The principle of an infrared absorption technique was briefly 
described in previous papers ;27 it is based on correlation of the 
absorbance ratio [B-0]/[Si-O] with the chemical composition of the 
glass films. In our earlier work2.2 the absorbance ratio was determined 
from the measured B-0 net absorbance maximum in the wavelength 
region near 7.3 µm (1370 cm -1) and the Si -O absorbance maximum 
at the stretching vibration frequency near 9.3 µm (1075 cm -1). This 
method is limited to glass thicknesses up to about one micrometer. It 
will be shown that the infrared absorption technique can be extended 
to films of several micrometer thickness by using beam -attenuation 
techniques or by utilizing the weaker absorption peaks at 10.9 µm 
(917 cm-l) for B -O -Si and 12.5 µm (800 cm -1) for Si -O. It is not 
necessary to know the exact film thickness, since absorbance ratios 
rather than absolute values are taken. 

Applications of this analytical method will be discussed for in- 
vestigating effects of glass deposition parameters, silicate formation, 
heat treatment of films, and stability of borosilicate glass films over 
periods of several years. 

Experimental Techniques 

1. Film Substrates 

The silicon wafers used as film substrate should transmit uniformly at 
least 50% of the infrared in the wavelength range of 3 to 14 µm with- 
out exhibiting scattering or back-to-front surface reflection phenomena. 
We found that uncompensated silicon of at least 100 ohm -cm resistivity 
made from vacuum float zone refined crystal low in oxygen fulfills these 
requirements if the slices have a thickness of about 0.025 inch (to avoid 
interference effects) and are polished on both sides. However, silicon 
with somewhat less ideal properties can be used as long as the substrate 
wafer is uniform and a piece of it is positioned in the reference beam. 

2. Method of Film Deposition 

Borosilicate glass films were prepared by chemical vapor deposition 
from nitrogen -diluted silane and diborane reacted with excess oxygen 
by the method described previously.' A small planetary hot plate 
reactor,' as well as a larger version of similar design, were used for 
depositing the films at a substrate temperature of 450°C. The glass 
composition was varied by using different diborane/silane ratios. Uni- 
form film thicknesses in the range of typically 1 to 3µm were deposited 
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for most samples, with thin silicon dioxide top layers to ensure compo- 
sitional stability' during the investigation. Appropriate corrections in 
the boron concentrations were made to compensate for this layer, as 
will be indicated. 

3. Chemical Analysis 

Chemical analysis of the glass films was employed to correlate the 
infrared data with the composition of the films. Coated silicon wafers 
were immersed in dilute hydrofluoric acid solution just long enough to 
dissolve the glass films, as evidenced by the hydrophobic behavior of 
the surface.' The solution was analyzed by complexing the BF,- with 
N-methylthionine (Azure C) and extraction of the dye with dichloro- 
ethane followed by colorimetric measurement.10 The boron contents in 
the range of 0.5 to 15 µg can be determined by this method with an 
average deviation of ±0.2 µg. The quantity of glass used for each 
chemical analysis was sufficient to contain 6 to 30 µg of boron per 
sample for thin-film films, and 50 to 500 µg for thick film samples. 
The glass compositions are expressed as mole percent B003 in the glass. 
The Si02 contents were determined by difference, since previous tests 
had shown that no separate analysis of silicon is required for these 
binary borosilicates, (B203). (SiO2)1_x. 

4. Infrared Spectroscopic Analysis 

The following procedure is used for analyzing films up to 1.2 µm thick- 
ness : one half of each substrate wafer, stripped of glass film with diluted 
HF, is placed in the reference beam of a double -beam infrared recording 
spectrophotometer (Perkin-Elmer Model 137B). The coated half of the 
wafer is placed in the sample beam of the instrument. Both wafers are 
positioned perpendicular to the infrared beam. The instrument is set 
to zero absorbance by scanning the spectrum for the absorption mini- 
mum (usually in the wavelength region from 3 to 6µm) and adjusting 
the reference beam attenuator for zero absorption. The spectrum is 
then recorded at slow scanning speed, and the absorbance values (A) 
of the absorption maxima read for the B -O and Si -O stretching - 
vibration major peaks. The baseline for the B -O peak is determined 
as indicated in Fig. 1, to calculate the net absorbance. The absorbance 
ratio (r) is calculated as follows : 

Net AII.0at7.3,um 
rts1.2µmt = 

Total Ast-o at 9.3 µm 
[1] 
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Note that the base -line absorbance for the Si -0 peak is taken as zero; 
we found that this improves the linearity of the absorbance ratio 
versus composition. 

4000 3000 
00 

10 

.20 

.30 0 
m .40 

.50 

.60 

.80 
10 

WAVENUMBER (Cm"' 1 

2000 1500 1200 1000 900 800 700 

l 1 

7 8 9 10 II 12 13 14 IS 

WAVELENGTH (MICRONS) 

Fig. 1-Infrared absorption spectrum of a typical borosilicate glass film 
(0.92 pm thick) deposited by vapor oxidation of the hydrides at 
450°C. The arrows indicate the net absorbance maxima for the 
B -O and Si -O major peaks used for ratio calculations. 

Films of 1 to 2.5 µm thickness can be evaluated by the same method 
if the reference beam radiation is attenuated by a substantial factor, 
which effectively expands the absorbance scale. The peak absorbance 
can thereby be brought within readability. This can be accomplished 
by placing a metal screen* of suitable mesh size in the reference beam; 
widening the spectrometer slit width is advantageous. 

Films in the range of 2 to about 7µm thicknesses are best evaluated 
by utilizing the B -O -Si peak at 10.9 p.m and the overtone Si -O peak 
at 12.5 p.m : 

Net AB.o.s( at 10.9 µm 
r(2-7 Ian) = 

Net As1.0 at 12.5 p.m 
[2] 

These measurements are taken with the silicon substrate blank wafer 
in the reference beam. 

It should be noted that the exact absorption maxima may differ 
slightly from the typical wavelengths stated, as will be explained. The 
ratio values were always determined using the absorption maximum of 
the peaks. This technique has certain limitations," but it is extremely 
convenient and is quite reliable for use with the empirical calibration 

Commercially available reference-beam attenuators of the adjustable 
:ype are particularly convenient. 
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curves recommended in this paper. The use of the integrated intensity 
of an absorption band would have greater theoretical significance as it 
measures the total absorption of energy by a vibration mode, but it is 

considerably less convenient for routine applications. 
Analysis based on the ratio of infrared reflectance maxima can also 

be used for film thicknesses up to about 1.2 µm íf suitable substrates 
are used, but interference effects complicate the spectra. 
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Fig. 2-Major peak absorbance ratio of SiO2 coated borosilicate films of 
1.2 to 1.3 µm thickness as a function of average boron oxide concen- 
tration in the total layer. Blank silicon substrate was used in 
reference beam. 

Results and Discussion 

1. Relationship of Film Composition and Absorbance Ratio 

The range of glass compositions studied was from 0 to 30 mole percent 
B203. Higher boron concentrations are of little practical interest since 

such compositions tend to be unstable? 
Fig. 2 shows a plot of the absorbance ratios 

Net A50at7.3p.m 
= 

Total As1-0 at 9.3 µm 
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as a function of the B203 contents of the glass. The film thicknesses of 
these samples were 1.2 to 1.3 µm, including an Si02 top layer of 0.05 µm. 
The plot should yield a straight line if the Beer -Lambert law holds.* 
The resulting curve is slightly bent with an inflection point at about 17 
mole percent, indicating some deviation from ideal behavior. The fact 
that this characteristic in the curve has been reproduced with samples 
made under different deposition conditions and with different film thick- 
nesses suggests that it is real rather than caused by some analytical 
artifact. 
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Fig. 3-Major peak absorbance ratio of SiO_ coated borosilicate films of 
2.1 to 2.6 pm thickness as a function of average boron oxide con- 
centration in the total layer. Reference beam was attenuated with 
screen to 28%. 

A graph of the same relationship for thicker films is presented in 
Fig. 3. These layers were 2.1 to 2.6 µm thick, including a 0.2 µm -thick 
Si02 top layer and very thin 0.065 µm Si02 base layer. The chemical 
analysis was made using the combined layer structure. The absorbance 
was measured before and after removal of the Si02 top layer with 
buffered HF etch,12 as indicated in the figure. A metal screen of 28% 

The Beer-Lambert Law states that the quantity of monochromatic 
radiation absorbed by a material is proportional to the concentration of 
absorbing molecules and the thickness of the material. 
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transmittance was placed in the reference beam to reduce the magnitude 
of absorbance to readable values. The resulting curve in Fig. 3 shows 
again an inflection point at about 17 mole percent B2O3. The portion 
of the curve beyond this point exhibits somewhat lower absorbance 
ratios than those in Fig. 2 taken without the screen. 

Fig. 4 shows the net absorbance ratio 

r(1 -2.G um) - 
Net/15.0.stat 10.9 µm 

Net A51.0at12.5µm 

as a function of the glass composition for the same series of samples. 
These measurements were taken with the blank silicon substrate in the 
reference beam, before and after removing the SiO2 top layer. The 
shape of the resulting curve for the scale chosen is nearly identical 
with the curve in Fig. 2, although the absolute ordinate values are 
entirely different. It is apparent that the presence of an SiO_, top layer 
in this relationship lowers the absorbance ratio significantly due to 
some anomaly caused by the 12.5 µm Si -O band, which is not the case 

4.5 

-- o WITH 5102 TOP LAYER (0.2#' l 

3.5 -C WITHOUT 5102 TOP LAYER 

3.0 

SY 2.5 

2.0 

E 
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/ / 

q / / 

2 4 6 8 10 12 14 16 IS 20 22 24 26 28 30 32 34 36 

AVERAGE Mol Y. 8203 IN FILM 

Fig. 4-Minor peak absorbance ratio of borosilicate films from Fig. 3 as a 
function of average boron concentration in the total layer. Blank 
silicon substrate was used in reference beam. 
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for ratios derived from the main absorbance peaks. Additional evidence 
that this effect is caused by the 12.5 p.m Si -O band can be offered by 
comparing the curve obtained from the net absorbance ratio derived 
from the B-0 band at 7.3 p.m and the Si -0 band at 12.5 p.m : the same 
relative difference is manifested for the samples with and without 
the SiO2 top layers. Calculations showed that the apparent absorptivity 
for the Si -O peak at 12.5 µm is considerably larger for the SiO2 top 
layer than for that of the Si -O in the borosilicate structure, although 
this is not the case for separate layers. It is likely that this anomaly is 
caused by interface reflectivity phenomena. For thick layers where the 
minor absorption band is used, one should therefore preferably have 
no SiO2 layers present, or else use a calibration curve prepared with 
samples having the same particular layer structure. 

2. Calibration Curves 

The use of a calibrated working curve is also recommended for the 
major peak ratio technique, since the ideal Beer-Lambert relation is not 
strictly obeyed. It is best to prepare standard samples under the same 
conditions and within the same thickness range as the samples to be 
analyzed routinely. This empirical procedure is most reliable and 
accurate as it will compensate for any possible effects of layer thick- 
ness, structure, film preparation, base -line determination, and instru- 
mentation. 

It should be kept in mind that the spectrophotometric accuracy 
falls off on both extremes of the absorbance scale." One should there- 
fore attempt to contain the absorption bands used in the analysis within 
the absorbance range of 0.1 to 1, or, preferably 0.2 to 0.8, by proper 
choice of one of the three infrared analytical techniques described, or 
by selecting a suitable film thickness if this is readily possible. 

It is often necessary to relate the solid composition to the gas 
composition from which the glass was nthesized. Since this relation- 
ship is nonlinear on a mole basis, it is best to prepare a graph as shown 
in a previous paper' for the small deposition system. A convenient 
alternative technique for use in the laboratory consists of plotting the 
absorbance ratios of the glass samples directly as a function of the gas 
composition expressed as mole -percent diborane in the silane plus 
diborane before dilution. However, it must be realized that this rela- 
tion is dependent upon deposition conditions for reasons discussed 
below. This type of working curve should therefore be considered 
valid only for a given reactor under fixed deposition conditions. 
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3. Effects of Reactor Geometry on Glass Composition 

The dependence upon film deposition conditions noted above is due to 

effects of the geometry and wall temperature of the reaction chamber 

on the composition of the borosilicate glass. The formation of these 

glassy films is accompanied by homogeneous gas -phase nucleation,* 

which results in deposition of colloidal coatings of partially hydrated 
boron oxide and silicon dioxide on the wall of the deposition chamber. 

The boron -to -silicon ratio in these wall deposits may vary with the wall 

temperature and/or the wall -to -volume ratio of the reactor because of 

the thermodynamics of the silane and diborane oxidation reactions. 

The relative initiation temperature for the diborane-oxygen reaction 

is 110°C, as compared to 195-200°C for the silane-oxygen reaction.'* 

The hydride mixture may therefore become partially depleted of boron 

inside the reactor. The degree of depletion is primarily a function of 

the temperature and relative surface area of the reactor wall.' For 
example, the solid compositions of the glass samples deposited in the 
large reactor (used for Figs. 3 and 4) are close to the theoretical 
stoichiometry, whereas those prepared with the small system (used for 
Fig. 2) contain considerably less boron.' Analogous observations have 

also been made for boron -doped oxides deposited under similar condi- 

tions on silicon, using sheet resistivity after diffusion as a quantitative 
analytical measure.'° 

4. Silicate Glass Formation as Evidenced by Infrared Spectroscopy 

Borosilicate glasses are made up by interacting B_03 and Si02 in 

various proportions. To examine whether glassy films of typical compo- 

sition deposited at low temperature (450°C) from silane, diborane and 

oxygen are real borosilicates, rather than merely physical mixtures of 

B203 and Si02, we examined the infrared absorption spectra of 

separately vapor -deposited films of B003 and Si02 and then combined 

the samples in the infrared sample beam to obtain the combined addi- 
tive spectrum. A comparison was then made with a film obtained by 

the usual co -oxidation of the hydrides. 

Dry B203 films deposited from B2H6 and 02 exhibit the strongest 
absorption peak at 7.94 µm (1259 cm -1) due to B-0 bond stretching, 
and a weaker symmetric band at 13.94 µm (717 cm -1). These absorp- 
tion modes are characteristic of vitreous B203.16'7 Exposure of the film 

to moisture causes hydration of the boron oxide forming orthoboric 
acid, H3B03. This is evident by a shift of the B-0 main absorption 
peak to 6.82 µm (1468 cm -1) and the appearance of a new sharp band 
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at 8.38 µm (1193 cm -3) and two new small peaks at 4.44 pm (2252 
cm -1) and 11.33 µm (883 cm -1). All of these bands are characteristic 
of boric acid.' A strong absorption at 3.1 pm (3226 cm -1) caused by 
O -H oscillation from surface absorbed water1e becomes very pronounced. 
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Fig. 5-Infrared absorption spectra of a vapor deposited boron oxide film 
before (A) and after (B) hydration to orthoboric acid. 

Fig. 5 shows the spectra of a vapor -deposited B203 film taken im- 
mediately after deposition (A) and again after exposure to humidity 
(B). These phenomena are noted because undensified vapor -deposited 
glass films containing excessively high (greater than about 30 mole 
percent) boron oxide concentrations may devitrify forming a surface 
layer* of hydrated boron oxide, which then gives rise to the infrared 
bands described. 

Pure Si02 deposited from silane and oxygen (Fig. 6, curve A) 
exhibits a major band in the region of 9.2 to 9.4 µm (1087 to 1064 
cm -1),1` which is due to the Si -0 stretching vibration observed in all 

types of viterous SiO2." The exact position of the maximum is sensi- 
tive to film thickness and particularly to structure and, hence, depends 
upon the degree of densification.' A second, much weaker, stretching 
vibration band occurs at 12.5 µm (800 cm -1) . Undensified films always 
show a small band in the region of 2.7 µm (3704 cm -1) caused by 0-H 
stretching due to absorbed moisture. 

A film laminate consisting of a 0.3 µm layer of B203 deposited on 
a silicon substrate wafer and a top layer of 0.7 µm Si02 showed the 

* This layer can be readily removed by rinsing with methyl alcohol 
without further changing the original glass layer. 

438 RCA Review Vol. 32 September 1971 



BOROSILICATE FILMS 

following results. When measured against a 0.7 µm codeposited film 
(Fig. 6, curve A) in the reference beam, the difference spectrum re- 
vealed the expected spectrum for vitreous B203 (Fig. 6, curve B). 
Measured against a silicon blank in the reference beam, a composite 
spectrum resulted, as expected, consisting of the sum of the absorbances 
of the individual spectra (Fig. 6, curve C). The appearance of this 
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REFERENCE REAM I 

Fig. 6-Infrared absorption spectra of vapor deposited Si02 (curve A), 
13203+ Si02 (curve B), and B20, by difference measurement 
(curve C). 

spectrum is quite different from the spectrum of a glass of comparable 
composition deposited by simultaneous oxidation of a silane-diborane 
mixture (Fig. 1). The most obvious difference is the absence of the 
B -O -Si absorption peak at 10.9 µm (917 cm -1) and occurrence of the 
B -O absorption maximum at 7.94 µm (1259 cm -1) instead of at the 
typical position 7.3 µm (1370 cm -1). Heating of the laminate in argon 
for 15 minutes at 770°C produced a spectrum intermediate between 
additive and mixed component spectra, indicating that partial forma- 
tion of borosilicate had taken place at the B203-Si02 film interface. 
Inspection of the B203-Si02 phase diagram" shows that, at this reaction 
temperature, the B203 phase can be expected to dissolve a substantial 
fraction of Si02. 

These experiments clearly demonstrate that, even at the low tem- 
peratures tested (280-480°C), co -oxidation of nitrogen -diluted silane 
and diborane with oxygen results, under proper conditions,' fn a real 
borosilicate glass, not merely in a mixture of B203 and Si02. In other 
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words, there is some chemical interaction between the boron oxide and 
the silicon dioxide networks. The spectra also show that the various 
absorption bands utilized in the analysis are not seriously interfering 
with each other, especially since the net peak height ratios are deter- 
mined. Some interference of the Si -0 major peak with the B -O peak 
is manifest by the apparent shift of the B -O maximum towards longer 
wavelengths as increasing boron concentrations move the B -O peak 
closer to the Si -O band, but this interference does not affect the net 
absorbance ratio. It should also be noted that the absorption maxima 
of the B-0 and the Si -0 peaks shift slightly toward shorter wavelengths 
as the glass thickness increases. 

5. Effect of Heat Treatments 

Densifying heat treatments of vapor -deposited glass films at typically 
800°C in nitrogen, oxygen, argon, or air for 10 to 15 minutes are 
desirable in practical applications where stable film structures with low 

structural stresses must be attained.' The effects of such heat treat- 
ments on the infrared spectrum and the absorbance ratios of borosili- 
cates should therefore be briefly discussed also. 

One of the most apparent effects in the infrared spectrum of heated 
samples is the increase in the absorption maximum of the Si -O major 
band at 9.3 µm and its shift toward shorter wavelengths. The absorb- 
ance of the main B -O band at 7.3 µm remains unchanged, indicating 
that no loss of B2O3 occurs during heating at temperatures of typically 
800°C. This is true regardless of the presence or absence of an SiO2 

top layer. Therefore, the absorbance ratio [B-O]/[Si-O] is lower than 
before the heat treatment and decreases with increasing boron concen- 
trations, but the general shape of the ratio versus composition curve 
remains the same, as seen from the dotted line in Fig. 2. 

The B -O -Si and minor Si -O bands both show an increase in the 
height of the net absorbance peak on heat treatment, mainly 
due to a decrease in the base line of the peaks. Also, a narrowing of 
the bands occurs, which appears to sharpen the resolution. The in- 
crease is substantially greater for the Si -O band at 12.5 µm, which 
results in a lowering of the ratio value after heat treatment. The peaks 
of the absorption maxima both shift toward shorter wavelengths 
(larger wavenumbers) on heating. Typically, the B -O -Si peak at 10.9 

µm gains 4 to 6 cm -1, and the Si -O peak at 12.5 µm gains 11 cm -1. 
These changes are shown in the spectra of Fig. 7 depicting a boro - 
silicate glass film of about 5µm thickness before and after densifica- 
tion at 800°C. 
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6. Stability of Vapor Deposited Borosilicate Glasses 

We pointed out in a previous paper' that over long periods of time 

vapor deposited borosilicate films are stable only if they are densified 

sufficiently by a heat treatment. This conclusion had been reached 

primarily from an analysis of dielectric properties of the films; it can 

now be confirmed by infrared spectroscopic data. 

Borosilicate layers containing 16-19 mole percent B202 were de- 

posited on silicon wafers at 450°C by standard techniques.' A low and 
a high deposition rate were tested : 0.132 and 0.333 µm/min. The glass 
thickness was 1.0 µm. Top layers of 0, 0.01 and 0.03 µm Si02, re- 
spectively, were deposited over the glass to examine stabilizing effects 
on the borosilicate composition. A duplicate of each sample was densi- 
fied by a heat treatment in air at 800°C for 10 minutes. Infrared 
spectroscopy was then carried out starting immediately after deposition 
and at intervals extending over a period of 3.6 years; the samples were 
stored in Petri dishes open to (humid) laboratory room air at approxi- 
mately 23°C. A condensed summary of the results is presented in 

Tables 1 and 2. It can be seen that densified borosilicate films deposited 
at low or high rates exhibit satisfactory stability, in contrast to un- 
densified films without Si02 top -layer protection. 

Thicker films (2.5 µm) of undensified glass have shown better 
stability than thinner layers, particularly if stored in a dry atmosphere. 
For example, the spectra shown in Fig. 7 were taken after storing the 
samples for 4 years in dry air. 
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Fig. 7-Spectral shifts of the B -O -Si band and the minor Si -O band on 
heat treatment of a -5 µm thick borosilicate layer. 
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Also included in the tables are results that indicate the remarkable 
resistance of densified films to boiling distilled water, a particularly 
severe stability test for glass films." 

Conclusions 

The preferred technique of infrared analysis is based on determining 
the ratio [B-O]/[Si-O] of the absorbance maxima of the main vibra- 
tional bands in the 7 and 9 µm -range and reading the glass composition 
from a calibration curve of absorbance ratio versus B2O3 contents. 
Systematic errors are canceled out, and the exact thickness of the film 
need not be determined. A glass film thickness up to 1.2 µm can be 
analyzed by this technique with good accuracy and precision. 

Samples of 1 to 2.5 µm film thickness can be measured by attenu- 
ating the reference beam, which effectively expands the recorder scale 
such that the absorption maxima come within readability range. 

Thicker layers up to about 7µm can be evaluated by utilizing the 
Si -O -B peak near 11 µm and the Si -O peak at 12.5 µm. The ratio of 
the net absorbance of these peaks can be related to the boron concen- 
tration as in the preceding technique, but the ratio is influenced criti- 
cally by the presence of SiO2 layers, in contrast to the ratio of the 
major peaks. The effect is believed to be caused by interface reflectivity 
losses. 

Calibration curves in terms of the composition of the hydride 
mixture used for depositing borosilicate glass films are very useful, 
but should be prepared for a given set of deposition conditions. 

Applications of the method have been described for several in- 
vestigations leading to the following conclusions : 

(1) The borosilicate glass composition has been shown to be dependent 
on the geometry and temperature of the reactor due to the thermo- 
dynamics of the mixed hydride oxidation. 
(2) Oxidation of a nitrogen diluted silane-diborane mixture in the 
temperature range of 280 to 480°C has been demonstrated to yield a 
borosilicate glass, not merely a physical mixture of B2O3 plus SiO2. 

(3) Densification of high -boron glasses can lead to surface layers of 
B2O3 that may hydrate to H3BO3 when exposed to moisture; these 
layers show characteristic infrared absorption bands. 
(4) Heat treatment of borosilicate glass films at typically 800°C in- 
creases the absorption intensity of the Si -0 bands and the Bi-O-Si 
band, but not that of the B -O band. Characteristic shifts in the wave- 
length positions of the absorption maxima occur on densification of 
the structure. 
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(5) Undensified and densified borosilicate glass films of 1µm thickness 
containing 16 to 19 mol % B203, with and without thin Si02 top layers, 
were measured over a storage period of 3.6 years in room air of high 
relative humidity. The densified films with a thin Si02 top layer 
remained essentially stable over this time period, regardless of the 
rate of film deposition tested. Exposure to boiling distilled water did 
not change the composition of these films. As previously noted,' un- 
densified borosilicate films are unstable on prolonged storage. The 
spectra of undensified films show a decrease of the B-0 band, which an 
Si02 top layer can greatly reduce. The absorbance maximum of the 
major Si -O band of these films increases in magnitude with storage 
time, similar to what occurs during a high -temperature heat treatment 
within minutes. Thicker films of undensified layers, particularly if 
stored dry, have shown much better stability on storage. 
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Numerical Differentiation Formulas For Stiff 
Systems of Ordinary Differential Equations 

R. W. Klopfenstein 

RCA Laboratories, Princeton, N.J. 

Abstract-Numerical differentiation (N.D.) formulas of orders one through six 
provide effective means for the numerical solution of stiff systems of 

ordinary differential equations in that they are stable In a symmetric 
wedge including the negative real half-line. A generalization of pre- 

viously used N.D. formulas increases the angular width of the wedge 

of stability at only modest cost in increased local truncation error. The 

asymptotic (large h) sensitivity of the formulas to the accuracy of the 

Jacobian matrix is not increased by this generalization. These formulas 

are useful, for example, in the determination of the response of large 

scale integrated circuits. 

1. Introduction 

The practice of numerical differentiation has traditionally been an 

anathema for practicing numerical analysts. This has been primarily 
due to the great sensitivity to small uncertainties in the data for 
algorithms based on polynomial approximation. 

Recent work on the numerical solution of stiff systems of differ- 

ential equations has done much to restore the respectability of 
numerical differentiation, at least within that context. Indeed, such 

algorithms turn out to have some unique advantages over other possible 

multistep formulas. 
A formula that produces an approximation to the derivative of a 

given function at a given point through a linear combination of values 
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of the function will be referred to as a numerical differentiation (N.D.) 
formula. Thus, the formula 

where 

hf(x1-, yn+1-r) _E a,nyn+1m, 
m=0 

dy 
y'=-=f(x,y), 

dx 

is an example of such a formula suitable for the construction of ap- 
proximate solutions to ordinary differential equations. It represents 
a linear multistep method (Ref. [4], p. 209) and when r = 0 it is an 
implicit formula in that yn+1 appears on both sides of Eq. [1.1] and is 
not given explicitly by the formula. 

The most common form of Eq. [1.1] is given by 

k 

hf (xn+1, 1.1n+1) - 
m=1 m [1.2] 

where vmyn+1 denotes the mth order backward difference of the y 
values based at yn+1. This is a linear k -step method of order k. The 
properties of Eq. [1.2] are discussed in considerable detail by Henrici 
(Ref. [4], pp. 206-209). Among the first to recognize the efficacy of 
formulas of the type [1.2] for stiff differential equations were Curtiss 
and Hirschfeldert in 1952. They explicitly exhibit versions through 
the fourth order (k = 4) . More recently Gear' and Krogh° have recog- 
nized their applicability for systems of stiff differential equations and 
have reported considerable success in their exploitation toward that end. 

In this paper I report the results of studies of a generalization of 
Eq. [1.2] that makes use of data generally present. This generalization 
results in improved stability characteristics at little cost in compu- 
tational effort. The asymptotic (large h) stability characteristics of 
Eq. [1.2] as well as its generalization are studied in a subsequent sec- 
tion. These asymptotic stability characteristics provide guidelines for 
the exploitation of such formulas in applications. 

2. Stability Diagrams and Optimization of Stable Regions 

One particularly effective implementation° of Eq. [1.2] makes use of 
an extrapolative predictor formula, 
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P-Fi= E myn, 

m=0 
[2.1] 

to obtain a first estimate for y+1. It is generally desirable that Eq. 
[2.1] have the same order of approximation (k) as Eq. [1.2]. Thus, 
Eq. [2.1] involves one more back point than does Eq. [1.2]. It is 
natural to inquire whether this additional datum would be of use in 
generalizing Eq. [1.2] to further improve its many desirable properties. 

To that end, the following N.D. formula is considered : 

where 

E_vmy+i-ayko,i+1_,.+0,khf (xn+1> Jn+1) _ 
7l2 

k 1 

Yk=E 
,m. 

m=1 

[2.2] 

In this form it is evident that Eq. [2.2] is of the same order as Eqs. 
[1.2] and [2.1]. Eq. [2.2] thus constitutes a one parameter family of 
kth order implicit N.D. formulas, and that parameter may be chosen 
to emphasize one or another desirable property of the algorithm. 
Through Taylor series expansions it is found that the error constant 
(Ref. [4], pp. 223, 238, 251) associated with Eq. [2.2] is given by 

1 
C=crYk+ 

k+1 
[2.3] 

In order to determine the stability properties of Eq. [2.2], I apply 
it to the single equation, y' = yy, and determine the values of ,lh for 
which solutions of the resulting difference equation would tend to zero. 
The characteristic equation of this resulting difference equation is 
given by 

[k 
,>7t = q = ) - kec+l, 

m m=1 

1-1-Á-1=1-e [2.4] 
-lr<q5a. 
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The region, SQ, of absolute stability in the q -plane is the complement 

of the map of the exterior of the unit circle in the A -plane. Thus, the 
point at infinity is always included in the region Sq for the family of 

N.D. formulas of Eq. [2.2]. If the region, Sq, contains as a subset the 
entire left -half plane, the corresponding algorithm is termed A -stable.' 

Dahlquist' has shown that in order for a multistep formula to be 

A -stable it must be (1) implicit and (2) have an order equal to or less 

than two; and further, that among all second order formulas that are 
A -stable the trapezoidal rule has the smallest error constant. There- 
fore, I will first study second order algorithms from the family of Eq. 
[2.2] seeking to minimize the error constant of Eq. [2.3] while retaining 
A -stability. Under the substitution indicated in Eq. [2.4] it is found 
that for k = 2 

Re(q) = 4sin40[1 - 3a + 12acos20], 
[2.5] 

B=-, 
2 

where Re (q) denotes the real part of q. 

Eq. [2.2] will be A -stable so long as Re(q) is non -negative for all 
values of p. From Eq. [2.5] it is seen that this will be the case if and 
only if -1/9 a S 1/3. Since the error constant of Eq. [2.3] is a mono- 
tone function of a, the following theorem has been established : 

Theorem 1. A -stable N.D. formulas of the family of Eq. [2.2] have 
orders equal to or less than two.' Among those of second order, that one 
corresponding to a = -1/9 has the smallest error constant equal to 
2CT, where CT is the error constant of the trapezoidal rule. 

The boundary of the stable region for second order algorithms is 
exhibited in Fig. 1 for three different values of a. The smallest value 
shown, a = -2/9, corresponds also to a = 0 for k = 3. 

For N.D. formulas of orders greater than two, there is, of course, 
no hope of obtaining A -stability. I will obtain A (a) stability in the 
sense of Widlund' for orders equal to or less than six° and seek to 
maximize the width of the wedge shaped region so obtained by an 
appropriate selection of the parameter a. 

A numerical procedure was used to obtain the value of a for orders 
three through six of the N.D. formulas of Eq. [2.2] which maximized 
the angular width of the wedge. The results for the sixth order case are 
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Fig. 1-Boundaries of stable regions for numerical differentiation formulas. 

exhibited in Fig. 2. It is seen that in this case, the angular width of 
the wedge has been almost doubled. 

Table 1 summarizes the results of this section and indicates, in 
greater detail than the graphs of Figs. 1 and 2, the tradeoffs to be 
expected. 

k6 

161 

141 

12i 

101 

Si 

61 

41 

21 

17.6" 29 4 

Fig. 2-Boundaries of stable regions for numerical differentiation formulas. 
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Table 1-Optimum N.D. Formulas 

Computing Time 
Percent Increase 
(Decrease) for 

Given Max. Error k a Max (cotiT) Min ro Error Constant 
1 

6 0 3.10722 17.84° C0=- 
7 

+ 10.2% 6 .0464 1.77469 29.40° 1.7958 Co 

1 
5 0 .785799 51.84° C° _ - 

6 

+ 11.9% 5 .0551 .626691 57.92° 1.7549 C. 
1 

4 0 .299032 73.35° Co = - 
5 

+ 14.1% 4 .0665 .248316 76.05° 1.6927 Co 

1 

3 0 .0693592 86.03° C.= - 
4 

+ 17.2% 3 .0834 .0579483 86.68° 1.6116 C. 
1 

2 0 0. 90" Co=- 
3 

1 - 29.3% 2 -- 0. 90° 0.5 C. 
9 

Note: cp is the half -angle of the wedge of absolute stability. 

3. Asymptotic Stability of P(EC)m Algorithms Based on N.D. Formulas 

While the analysis of the preceding section was based on implicit 
formulas of the form of Eq. [2.2], all algorithms for the numerical 
solution of ordinary differential equations are, in fact, explicit. The 
initial value problem 

dy 
Y'=-=f(x,Y), 

dx 
[3.1] 

Yo=Y(0), 

is given and an algorithm constructs a discrete set 

S = {y}=0N, [3.2] 
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such that the y so obtained approximate the exact solution of Eq. [3.1], 
y (x), on some discrete mesh of points, x,,, with exact correspondence 
only at the point xo. In progressing from the nth to the (n + 1) st point, 
the information available is some fixed number, say k + 1, of previous 
members of the sequence S and the derivative relationship of Eq. [3.1]. 
For the purposes of analysis, the set of points, x, are generally assumed 
uniformly spaced at an increment (step size) h though a practical 
algorithm must contain means for changing this step size as well as 
starting the solution. A constant step size is assumed in the work 
of this section. 

To summarize, I consider the system of ordinary differential 
equations of Eq. [3.1] and a (k + 1) -step algorithm 

Y F(h,J,Y, . . .,Y -k), [3.3] 

which generates the sequence of Eq. [3.2] of approximate solution 
values to Eq. [3.1] with h a real positive scaler. J is a matrix which ap- 
proximates the matrix J of the linear system of ordinary differential 
equations 

Y=JY-f c, [3.4] 

with c a constant vector, and J a constant matrix of order N with 
eigenvalues properly in the left -half complex plane. The difference 
between approximate and exact Jacobian matrices is denoted by the 
matrix 

=J -J. [3.5] 

Definition 1 

The algorithm of Eq. [3.3] is said to be asymptotically (h-- co) abso- 
lutely stable in solving the system of Eq. [3.4] if the sequence {Y) -o°° is uniformly bounded in norm for all sufficiently large li he > 0 when 
the eigenvalues of 

J-10 = I 

lie within a region R containing a circle of radius c> 0 centered on 
the origin where c is independent of li. 
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Definition 2 

The region R of Definition 1 is called the "region of asymptotic abso- 
lute stability" for the algorithm of Eq. [3.3]. 

The concepts and definitions introduced here are similar to those 
introduced at the beginning of Section II of Ref. [5]. The definition of 
asymptotic absolute stability given here, however, is more restrictive 
than that given in Ref. [5] and would not be met by the algorithms 
discussed there. The more favorable asymptotic stability characteristics 
of the algorithms discussed here is due to the numerical differentiation 
(N.D.) form of Eq. [2.2]. 

I now define a class of explicit P(EC)'n algorithms that make use 
of the predictor of Eq. [2.1] followed by m applications of the Newton- 
Raphson method to the N.D. corrector formula of Eq. [2.2]. The algo- 
rithm is defined explicitly by 

Yn+l(0) = Pn+1 = E "I Yea, 
m-0 

1 
/ 

k 

rt = (1 - a) (Yn+1(l-1) - hn+1) -- hf(xn+LYn+1lI-1)) - YmO "Yn 

7k m=1 

-A -1r1, [3.6] Yn{-1(1) = Yn+1.(1-1) 

1= 1, 2 . . , ,;z, 

where 

li A=(1-a)I--J. 
Yk 

As in Ref. [5], it suffices to apply Eq. [3.6] to Eq. [3.4] with c set 
equal to zero since the sequence yn obtained for non -zero c will be 
bounded in norm if and only if the sequence obtained for e = 0 is. 
When this is done, the algorithm of Eq. [3.6] takes the form 

k 

Yn+1(0) = l)n+l = 'nYnr 
m=0 

r1 = (A --0) (Yn+19-1) - Pn+i) -- j hJpn+1 - mYn r 

Yk 7k m=i 
[3.7] 

la 

= (A --.,) (Yn-F1(1-]) 
7k 
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Yn+la) = Yn+1(1-1) 

1=1,2,,m. 

After a certain amount of algebraic manipulation, Eq. [3.7] leads to 

la 
AYn+1(i) = -0 (Yn+l(1-1) - Pn-F1) + AYn+1(1), 

7k 

with [3.8] 

)a 1 
k 

Ayn+1(1) _ (1 - a) Pn+1 + - APn+ I - - EYrn mYn, 
7k 7k rn=I 

which exhibits the immediate convergence of P(EC)'n algorithms when 
= 0, i.e., when .7= J. 

Lemma 1. The Yn+l(t) satisfying Eq. [3.8] can be expressed by 

'-1 la 

Yn+1(1) _ E 
(_A 

-1A (Yn+l(1) - Pn+l) + Pn+l+ 
Yk 

for t=1,2,,m. 

[3.9] 

Proof : The proposition holds identically for 1=1. Assume that it 
holds for 1= k. Then, by Eq. [3.8], 

yn+l(k+l) 
Yk A-1á I \Yk A -1A) 

(Yn+1(') - Pn+i) 
r-0 

k-l( lb 

=rE \- A -1)r+1 
7k 

h 

1I` . Pn+1 (- Pn+l I . Yn+1(1), 

(Yn+1(1) - Pn+1) + Yn+1(1) Pn+1 

=rE (07k-A-10) (Yn+l(1)-Pn+1)+pn+1 

Hence, the result follows by induction. 
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In particular, as a consequence of Lemma 1, 

-1 h 
Vn+1(m) = E - A-1á (Y,.+1(1) - Pn+1) + Pn+1 

r=U Yk 

Now, from Eq. [3.8], 

1 

A (Yn+1(1) - Pn+i) = 
% l 

h,11).+1- E Yn, v n`Yn r , 

m=1 

so that 

[3.10] 

[3.11] 

n,-1 h k 

YkAYn+1(m) = E(-.1A-11 hJP+1 - r` YmpmY + YkAPn+1 
r=0 yk l mL=1 

[3.12] 

Now attention will be restricted to matrices J which can be fully 

diagonalized by a similarity transormation, and the definitions 

Q = hPJP-1, 
D = 

= PV, (m" 

rn+1 = PPn+1, 

1 

B=PAP-1= (1-a)I--(Q-D), 
Yk 

[3.13] 

are introduced where Q is a diagonal matrix whose elements lie entirely 

in the left half plane. 

When these are applied to Eq. [3.12], one obtains 

m-1¡ 1 r 

YkBzn+1 = E I - DB-1 (Qrn+i - EYmmZn)+ YkBrn+1' 
r" Yk 

m=1 [3.14] 

When h-* oo, 

1 

B (Q -D), 
Yk 

B-1 ^ -71(Q -D)-1, 
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and the asymptotic form of Eq. [3.14] is 

I 2+,1 ^' I - 
r=0 

(Q -D) -1E [-(Q-D)-1]rQ jn+l, 

. A mr+ 

Lemma 2. The matrix An, defined in Eq. [3.15] is expressible as 

An, = (-1)m[(Q-D)-1D]n,. 

[3.15] 

[3.16] 

Proof : By direct substitution Eq. [3.16] holds for m = 1. Assume that 
it holds for m = 1. Then 

A1+1= Ai - (Q -D) -1[-D(Q-D) -1]'Q, 

= [-(Q -D) -1D]'- (Q-D)-1[-D(Q-D)-1]`Q, 

= [-(Q -D) -1D]' - [-(Q -D) -11311(Q -D) -1Q, 

= [-(Q-D)-1D]t(I - (Q -D) -1Q), 
= [-(Q -D) -1D]'(Q-D) -1(Q -D -Q}, 

= [-(Q -D) -1D]'+1 

Lemma 2 follows by induction. 

By methods similar to those used in Appendix 1 of Ref. [5], it can 
be shown that it is sufficient to study the asymptotic form of the 
difference equation of Eq. [3.15] in order to establish the asymptotic 
stability required by Definition 1. One, therefore, studies the stability 
properties of the difference equation 

Zn+1 = Antrn+l, 

= Arn 0 r Znr 
r 0 

= Am E (-1)r + 1 11 2n-r. 
r=0 

[3.17] 

Again following the methods of Ref. [5], it can be shown that the 
stability of Eq. [3.17] is equivalent to the requirement that the eigen- 
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values, A, of the matrix eigenvalue problem 

[Ák+1 - (íi - 1) 7,+1]A",u [3.18] 

be equal to or less than unity in absolute value and that eigenvalues 
of unit magnitude be simple. 

Now consider the eigenvalue problem 

Alta =f(X)u. [3.19] 

Repeated multiplication by Al leads to 

Aimu = Amu = MOO u. [3.20] 

Therefore, Eq. [3.19] is equivalent to Eq. [3.18] with f (a) defined by 

dk(A) 
fm(A) = 

dk(A) - 1 

[3.21] 
k+' 

dk(Á) =C -1 
Since A, = -(Q-D)-'D, Eq. [3.19] can be written as 

Du = g(A)Qu, 

with [3.22] 

f (a) g(a)= 
RAJ -1 

The eigenvalue value problem of Eq. [3.22] furnishes the basis for 
studying the asymptotic region of stability of Definitions 1 and 2. 
The region R defined therein is the complement in the g -plane of the 
map of the exterior of the unit circle in the A -plane. This mapping is 
defined through Eqs. [3.21] and [3.22]. 

Theorem 2. The P(EC)"' algorithm consisting of one application of 
the predictor of Eq. [2.1] followed by nn applications of the Newton- 
Raphson method to the corrector of Eq. [2.2] is asmptotically (h - oo) 

absolutely stable in solving the system of Eq. [3.4]. The region R of 
asymptotic absolute stability is the complement in the g -plane of the 
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map of the exterior unit circle in the A -plane. This mapping is defined 
through Eqs. [3.21] and [3.22]. 

Proof : It only remains to be shown that the region R is not empty. To 
do this, it is necessary to exhibit a neighborhood, N, of the origin in 
the g -plane such that all of the k + 1 images in the A -plane of every 
point in N fall within the unit circle. 

The mapping, g, may be expressed by 

(1 -g -1)m = 1 - (1 -A -1)k+1, 

which is equivalent to 

Ák+1(g - 1.)m + gm - 1)k+1 = 

[3.23] 

[3.24] 

From Eq. [3.24] it is evident that the origin itself is in N, as required, 
since the images of g = 0 are a (k + 1) -fold zero in the A -plane. 
A straightforward application of inequalities to Eq. [3.23] shows that 

I g I 
<E. 

implies that 

where 

I A I 
< 

1 

is 
1 m 1/(A;+1) 

--1 -1 -1 
E , 

1 

< E < 
1 + 21/"' 

From this, it can be inferred that 

1 

Igl< 
1 + [1 + 2k+1]1/m 

is sufficient to ensure that all k + 1 images in the A -plane satisfy 

[3.25] 

[3.26] 

[3.27] 

JAJ<1. QED 
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r min ` .125 

Fig. 3-Asymptotic regions of absolute stability for P (EC)," implementa- 
tion of second order N.D. formulas. 

It is to be noted that the parameter a which appears in Eqs. [2.2] 
and [3.6] does not appear in the eigenvalue problem of Eq. [3.22] de- 

fining the asymptotic region of stability. Thus, a may be selected to op- 

timize the region, Sq, of absolute stability in the q -plane without affect- 
ing the asymptotic region of absolute stability. This is not to say, of 
course, that a may not influence the stability properties of Eq. [3.6] 
for intermediate values of Ji. 

Figs. 3 and 4 exhibit the asymptotic regions, R, of absolute stability 
for one and two applications of the corrector of Eq. [2.2] for second- and 
fifth -order formulas, respectively. It should be noted that these are 
shown to different scales and the regions of Fíg. 4 are actually much 
smaller than the corresponding regions of Fig. 3. 

Fig. 4-Asymptotic regions of absolute stability for P (EC)' P (EC)m implementa- 
tion of fifth order N.D. formulas. 

460 RCA Review Vol. 32 September 1971 



NUMERICAL DIFFERENTIATION 

The salient feature of these diagrams is their point of closest 
approach to the origin. This distance, denoted by rmio, determines the 
minimum deviation of the eigenvalues of J from those of J that can 
lead to instability in the algorithm in the asymptotic (h- co) limit. 
It is desirable that rmtn be as large as possible for minimum sensitivity 
to values of the Jacobian matrix. 

Table 2-Minimum Radius of Asymptotically Stable Regions for P(EC)"' 
Algorithms for various orders (k). 

k 
m 2 3 4 5 6 

1 .125 .0625 .0312 .0156 .0078 

2 .315 .233 .170 .122 .0871 

3 .343 .288 .241 .201 .166 

4 .399 .353 .311 .273 .238 

00 .5 .5 .5 .5 .5 

Table 2 exhibits the values of r,,,h, for various orders, k, of the N.D. 
formulas of Eq. [2.2] and various (fixed) numbers, m, of its application 
in a P(EC)"' implementation starting from the predictor of Eq. [2.1]. 
A number of characteristics of the resulting algorithms may be observed 
from this table. For a given number, m, of iterations the stable radius, 
rmin, decreases monotonically with increasing order, k, but the rate of 
decrease is smaller for larger m being approximately in the ratio 
(2m - 1)/(2m). Furthermore, for fixed order, k, the value of r",i 
increases monotonically with m, and in each case it approaches the 
asymptotic (m-> co) limit of r,,,i,, = 0.5. The most dramatic increase 
in rmi occurs in going from m = 1 to m = 2. This suggests less justifi- 
cation for increasing the number of corrector applications beyond two. 
It should be noted that at least two derivative evaluations are required 
if one is to have a measure of the convergence to Eq. [2.2] in a prac- 
tical algorithm. 

4. Conclusions 

The numerical differentiation formulas of Eq. [1.1] furnish a useful 
basis for constructing the numerical solution of stiff systems of ordinary 
differential equations when combined with the extrapolative predictor of 
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Eq. [2.1]. A non -zero parameter, a, may be introduced leading to the 
form of Eq. [2.2]. The order of the resulting algorithm is unchanged, 
there is no increase in storage requirements, and little increase in com- 

puting effort. The value of a may be selected to maximize the region 
of absolute stability, Sq, in the q -plane in the sense of Widlundr. Only 

modest increases in the error constants of the algorithm result from 
such selection (see Table 1). 

The formula of Eq. [2.2] may be implemented in a P(EC)," manner 
by using the predictor of Eq. [2.1] followed by m applications of the 
Newton-Raphson method to Eq. [2.2]. A study of the asymptotic sta- 
bility properties of these algorithms shows that such properties are not 
affected by the parameter a. Furthermore, there is little justification 
for using more than two applications of the corrector (m - 2) from 
the point of view of asymptotic absolute stability as defined here. 
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The Acoustoelectric Effects and the Energy 
Losses by Hot Electrons 

Part V-Physical Concepts in Energy -Loss Processes 

A. Rose, RCA Laboratories, Princeton, N. J. 

Abstract-The loss of energy by an excited electron is known generally as 
spontaneous emission. The physical origin of this emission must logic- 
ally lie in the interaction between the electron and its medium. The 
interaction in a solid medium, as opposed to vacuum, is easily traceable 
to a simple classical polarization of the medium by the emitting elec- 
tron. A coupling constant is defined having the natural limits of zero 
and unity. It is shown that the constant can be expressed either in 
terms of the electrical and elastic components of the energy of the dis- 
torted medium or in terms of the real part of its dielectric constant. 
The structure of the imaginary part is shown to play a negligible role. 
The coupling constant is valid in the classical limit of acoustoelectric 
interactions as well as in the quantum limit of electron-phonon inter- 
actions. By detailed balance, it is also valid for induced as well as 
spontaneous emission. The form of the coupling constant gives an 
easy insight into several tangential problems; a generalized expression 
for the Lyddane-Sachs-Teller relation, the self -trapping of electrons, 
and the spontaneous deformation of a lattice. 

Introduction 

A major part of this series of papers 5 has been concerned with the 
rates of energy loss by fast-moving electrons in a solid medium. As 
the velocity of the electron is increased, the electron radiates energy 
first to acoustic phonons, then to optical phonons, impact ionizations, 
plasmons, x-ray levels, and Cerenkov radiation, in that order. The 
range of electron energies extends from 10-3 to over 105 electron volts. 

* This is the concluding part of a series published in previous issues 
of RCA Review as follows: Part I, "Small Signal Acoustoelectric Effects," 
Vol. 27, p. 98, March 1966; Part II, "Rates of Energy Loss by Energetic 
Electrons," Vol. 27, p. 600, Dec. 1966; Part III, "Large Signal Acousto- 
electric Effects," Vol. 28, p. 634, Dec. 1967; and Part IV, "Field and 
Temperature Dependence of Electronic Transport," Vol. 30, p. 435, Sept. 
1969. 
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Each of these loss mechanisms has been treated separately in the 

literature," which extends over the past sixty years. The modes of 

treatment cover a wide range of physical models as well as mathematical 

techniques. For the most part, the analyses are carried out in Fourier 
space as opposed to real space. While all of the energy losses must, in 

the strictest sense, be treated by quantum mechanical methods, the 
higher -energy losses to electronic excitations' and Cerenkov radiation' 
have also been examined or approximated by classical methods. The 
losses to phonons, on the other hand, have almost universally been 

treated by perturbation theory. 

By contrast, we have attempted in this series to treat all of the 
loss mechanisms by a common model-a model that is relatively simple, 
graphic, essentially classical, and couched in real space. The necessary 
consistency with quantum principles has been obtained by imposing 
the more or less obvious constraints on the classical argument after 
the classical solution was arrived at. These constraints are (1) that 
the electron energy exceed the energy hw of the radiation it emits and 
(2) that the uncertainty radius of the electrons h/mv be less than the 
wavelength of emitted radiation. These constraints are sufficient to 
ensure agreement between the classical argument and the results of 
quantum mechanics for the average rate of loss of energy. The actual 
loss, of course, takes place via discrete quanta of energy and occurs 
stochastically in time and space. 

The classical argument introduced a new coupling constant /3 whose 
values have the natural limits of zero and unity. /3 was defined as the 
fraction of the available coulomb energy of the electron that could 
be transferred to the medium. The coupling constant was successful 
not only in unifying the wide gamut of energy -loss mechanisms but 
also in relating the macroscopic acoustoelectric effects to the micro- 
scopic electron-phonon interactions. Because this form of coupling 
constant ís new and because it has a broad significance extending 
beyond the field of energy loss, its meaning and evaluation are examined 
at length in this paper. The coupling constant bears, for example, on 
such problems as the Lyddane-Sachs-Teller relation, and the coupled 
phonon-photon luminescence emission by trapped electrons. 

The present form of coupling constant, in particular the fact that it 
physically can not exceed unity, illuminates several diverse problems, 
namely, the range of validity of the concept of deformation potential; 
the concept, introduced by Frohlich,' of a spontaneous instability of 
the structure of energy bands caused by the presence of electrons; and 

* See parts I and II of this series for list of references. 
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the concept, treated by Toyazawa," of electrons self -trapped by acoustic 

phonons. Each of these items will be discussed. 
Energy -loss phenomena are generally associated with the imaginary 

part of the dielectric constant. Our analysis, on the other hand, uses 

only the real part. The difference is more significant than the well- 

known free choice one has by virtue of the Kramers-Kronig relations 

to deal with either the real or imaginary parts of the dielectric con- 

stant. For fast electrons, the rate of emission of energy is actually 
independent of the form of the imaginary part of the dielectric con- 

stant, that is to say, independent of the magnitude of the damping 

constant y. The reasons for this are discussed in the present paper. 

Finally, we add a reminder that the classical approach to spon- 

taneous emission relates this loss to an elementary and well-defined 

classical interaction between the electron and its medium and avoids 

whatever mystery may have been attached to it by the formalism of 
perturbation theory. 

Origin of the Coupling Constant 13 

In the first of this series of papers a mechanical model was introduced 
as a prototype for the rates of loss of energy by fast electrons in solids. 

The mechanical model consisted of a stationary particle (analog of the 
electron) deforming some attendant mechanical system (analog of the 
solid medium in which an electron is immersed) so that an energy E,, 
called an energy well, was stored in the mechanical system. The 

response time of the mechanical system was taken to be T. 

It is immediately evident that the maximum rate at which the 
particle can impart energy to the mechanical system is 

dE E,,, 

dt max 

This is accomplished by letting the particle rest for a time r sufficient 

to impart the energy E,, to the mechanical system; abruptly moving 
the particle to a new position so that the energy Eu, is left in the wake 

of the particle; allowing the particle to remain at rest again for a 

time and again displacing it abruptly; and so on. 

If the disturbance created by the stationary particle in the sur- 
rounding mechanical system has a diameter d, then the average velocity 
of the particle in the above argument is of the order: 

d 
vo - . 

[1] 

[2] 
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If the particle now moves at a velocity v, considerably faster than va, 
it will traverse the diameter d in a time T = d/v that is too short to 
form a complete energy well. Only a fraction (T/r) 2 of the complete 
energy well will be left in the wake of the moving particle. The reason 
for squaring the ratio T/T is that the momentum imparted to the 
mechanical system is proportional to T; hence the energy imparted 
will be proportional to T2. In summary, then, the particle loses energy 
to the mechanical system at the rate : 

dE T 21 
E 

T T 

T 
= E w - . 

T2 

for T < T 

[3] 

The parallel expression for the rate of loss of energy by an electron 
in a solid was obtained from Eq. [3] by using the following equivalents : 

e2 

Ew=R + 

KHd 

v 
T=-, 

d 

T = w-1. 

[4a] 

[4b] 

[4c] 

Eq. [3] then takes on the general form for rate of loss of energy by 
an electron; 

dE e2w2 -R 
dt Kv [5] 

We have omitted from Eq. [5] a geometric factor that comes from 
summing up Eq. [5] over a range of shell diameters d. The equivalents 
shown in Eq. [4a] -[4c] were derived by considering a fast electron 
losing energy to a mode (e.g., polar optical phonons) whose character- 
istic frequency is w. The response time of the medium to an impulsive 
force is then, by definition, T = w-1. If we fasten our attention on a 
particular spherical shell around the electron extending from about 
d/2 to 3d/2, the disturbance in the medium also has these dimensions 
and the transit time is of order v/d. Finally, we recognize that the 
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only way the electron can act on the medium (ignoring its spin) is 

via its coulomb field. The maximum energy the electron can impart 
to the medium is its vacuum coulomb energy e2/d. If the electron is 

imparting energy by polarizing the medium, the maximum energy is 

reduced by KH to e2/(KHd) where KR is the dielectric constant for 
frequencies higher than those under consideration (in the case of 

optical phonons, KR is the electronic part of the dielectric constant). 
This part of the polarization permanently clings to the moving electron 

and masks the field and energy that it has available for doing work on 

the slower responding elements of the medium. The factor 13 (where 

0 < [3 1) was introduced purely formally to recognize that, in general, 
only a fraction of the available coulomb energy could be imparted to 

the medium. This fraction is not to be confused with the fraction 
(T/r)2, which enters in explicitly to take into account the imperfect 
transfer of energy arising from the fast motion of the electron-fast 
compared with the response time of the medium. The factor /3 has to 
do with the fraction of coulomb energy that can be transferred to the 
medium when the electron is essentially stationary. That is, it may 
have a quantum mechanical kinetic energy of localization but it is not 
moving through the medium. The act of imparting energy is defined 

by the operation of suddenly displacing the electron in the medium. 
The energy left behind in the medium where the electron was is the 
energy imparted. This operational definition is, of course, designed to 
match the manner in which a moving electron leaves behind a trail of 
energy in the medium. 

In addition to the formal definition of /3 as the fraction of available 
coulomb energy imparted to the medium, two other expressions for /3 

were obtained for use in particular cases, namely, 

and 

KL KR 
R= 

KL 

Electrical energy 
Q= 

Total energy iLatticedeformatton 

[6] 

[7] 

For well -separated resonances in a solid as, for example, the ionic 
resonances at a few hundredth of a volt and the electronic resonances 
at a few volts, the dielectric constants KH and KL in Eq. [6] refer to 
values above and below the resonance in question and on the flat parts 
of the dielectric constant versus frequency curves. 
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Eq. [7] is more general. If one thinks of any elastic deformation 
of a solid, there will be associated with this deformation an elastic 
energy and, in general, an electrical field energy. The total energy of 
the deformation will be the sum of the elastic energy and the accom- 
panying electric field energy as, for example, in the case of a deforma- 
tion in a piezoelectric solid. This is the total energy that appears in 
the denominator of Eq. [7]. The electrical energy that appears in tale 
numerator denotes the energy that electrons can gain by relaxing to 
the new conditions of the deformed medium. This relaxation takes on 
a variety of forms. For example, a sine -wave deformation ín a piezo- 
electric solid is accompanied by a sine -wave potential and field pattern. 
The electrical energy is the energy that electrons can gain by con- 
gregating in the troughs of the wave. In this case, the electrical 
energy is- also equal to the electric field energy, i.e., D/(8/7.). This is 
also true for polar optical phonons or for any deformation that creates 
a real, macroscopic electric field. We must note, parenthetically, that 
the electric fields that go to make up the elastic energy are, in contrast, 
atomic in dimensions and not coherent beyond an atomic layer. The 
term "real" is inserted as a reminder that the slope of an energy band 
caused by deformation or doping is not a real field in the Maxwellian 
sense even though it acts on free carriers as if it were. Note that, in 
the case of real, macroscopic electric fields, the field appears both as 
the numerator of Eq. [7] and as one term in the denominator. Hence, 
/3 can not exceed unity. This is consistent with its definition. 

For deformations that are not accompanied by a real, macroscopic 
electric field, the total energy in the denominator of Eq. [7] is just the 
elastic energy. The numerator is still the energy that is gained when 
the free carriers relax into the new energy level system of the deformed 
medium. 

The first part of this paper is concerned with the meaning of the 
coupling constant P. It will be derived both for mechanical and for 
electrical systems. It will include also a proof that the two expressions 
for /3, Eqs. [6] and [7], are equivalent for deformations accompanied 
by real, macroscopic electric fields. The proof has the added bonus of 
yielding a generalized expression for the Lyddane-Sachs-Teller rela- 
tion.' The meaning of the more general form for /3, Eq. [7], will be 
discussed in relation to the question of whether /3 can exceed unity and 
in relation to the more conventional treatments of energy loss. 

In summary, the central parameter determining the energy losses 
by electrons in solids is the coupling constant /3. Eq. [7] gives its most 
general definition. /3 is a direct measure of the transfer of energy 
between two systems. And, finally, a reminder that the rates of energy 
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loss can be used, as shown in Part IV, to obtain the normal, temperature - 
dependent mobilities of electrons in solids. 

Energy Transfer In Mechanical Systems 

We derive here the fraction of the energy of a compressed spring that 
can be transferred to a second quiescent or undistorted spring. This 
will depend on the relative spring constants. It will turn out also to 
be a symmetric fraction so that it will be independent of whether the 
transfer is from first spring to second or vice versa. In both these 
respects the springs not only offer a graphic parallel for the transfer 
of energy in electrical systems but also yield the correct quantitative 
relations. 

2 

A . x..lJ 
E2 

FIXED 
SUPPORTS 

O41 I1 1 

12 

\A 

Fig. 1-Energy transfer between springs. 

Consider, first, two springs with equal spring constants (Fig. 1). 
The first spring is compressed and the second undistorted. The two 
springs are in end to end contact. The first spring is released and the 
springs settle down after dissipating their kinetic energy so that they 
have equal amounts of stored energy. If the first spring was com- 
pressed by an amount s, the final rest position will obviously find each 
spring compressed by an amount s/2. This will mean that each spring 
has an elastic energy 1/4 of the initial energy of the first spring since 
the elastic energy varies as s2. In brief, 1/4 of the initial energy of the 
first spring was transferred to the second. If we had examined the 
system before the kinetic energies were dissipated we would, of course, 
find equal amounts of kinetic and potential energy such that half the 
energy of the first spring had been transferred to the second spring. 
Equal spring constants represent the conditions for optimum transfer 
of energy. 

We now examine the same problem but this time with different 
spring constant k1 and k2. Again, let the first spring be compressed an 
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amount s. After release, the two springs will come to rest at a point 
at which their forces of compression are equal, namely, 

k1(s-x) = k2x. 

The energy transferred to the second spring is then 

= 1/2k2x2, 

and the ratio of this energy to the initial energy is 

_sE 1/2k2x2 

E 1/2k1s2 

From Eq. [8] 

x kl 

s ki + k_ 

Insertion of Eq. [11] into Eq. [10] yields 

_SE k1k2 

(kl 

[8] 

[9] 

[10] 

[12] 

Eq. [12], by its symmetry, confirms the fact that the fractional energy 
transferred from one spring to the other is independent of which spring 
initially held the energy. Eq. [12] also reproduces the factor 114 for 
optimum transfer when the spring constants are equal, or the factor of 
1/2 if we add the kinetic energy. 

Finally, for k1 < k2: 

DE k1 

E k2 
[13] 

We can imagine, at this point, that k1 represents an electrical energy 
(like that of a coulomb field) and that k2 is the sum of two springs in 
parallel, one with the constant k1 representing an electrical energy and 
the second with the constant k3 representing an elastic energy. Then: 
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.áE k1 kl electrical energy 

E k2 k1 + k3 electrical energy -I- elastic energy 

electrical energy 

total energy spring #2. 

[14] 

If spring #2 represents the medium on which spring #1 (the electron) 
is doing work, we have confirmed, in brief, that the fraction of coulomb 
energy transferred to the medium is as shown in Eq. [7], 

DE electrical 

E total energy lattice deformation 

Transfer of Energy in Electrical Systems 

[15] 

In this section, we will reproduce the spring arguments for an electrical 
system consisting of a capacitor with fixed charges and a dielectric that 
can be moved in and out of the capacitor. It will turn out that the 
energy that can be transferred from the electric field of the capacitor 
to the dielectric medium will follow the same pattern as that of the 
two springs. The arguments here, however, will be somewhat more 
involved algebraically but are worth going through in detail because 
they yield a generalized form for the Lyddane-Sachs-Teller relation. 
The capacitor with fixed charges acting on a removable dielectric is 
the equivalent of an electron moving through a polarizable medium. 

Consider a medium whose dielectric constant has the classical form, 
with well -separated resonant frequencies tol, w2, etc; 

where 

2 2 pl Ulpn 

Ka=1+ 
m12 - m2 (.'2' - w2 

0)pt = 
4,rnie2 

m; 

[16] 

and v, it, and mti are the frequency, density, and mass, respectively, of 
each set of oscillators. The dielectric constant as a function of fre- 
quency is shown in Fig. 2. We have omitted from Eq. [16] and the 
figure the lossy (imaginary) term in the dielectric constant because we 
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will be concerned with the dielectric constant only on the flat parts of 
the curve somewhat removed from the resonances. This simplifies the 
algebra. It also emphasizes the contrast between the present treatment, 
which computes electron energy losses using only the real part of the 
dielectric constant, and the more conventional treatments, which begin 
with the imaginary part of the dielectric constant. The contrast, as 
we will clarify later, is not simply the usual choice one has, by virtue 
of the Kramers-Kronig relations, of dealing with either the real or 
imaginary parts of the dielectric constant. It is more fundamental in 
that the dielectric loss mechanism itself has substantially no effect on 
the rate at which an electron loses energy to the medium. 

J 

K= 

r> 
I 1 

o w wi w 

FIG. 2 

Fig. 2-Real part of the dielectric constant as a function of frequency. 
Dotted portions show response to single impulse of duration w-1. 

In Fig. 2 the solid lines are the usual response curves when the 
dielectric is excited by a periodic force of varying frequency. Near 
each resonance the response diverges to plus and minus infinity (in the 
absence of losses). If, on the other hand, we were to subject the 
dielectric to a single pulse of applied field, the width of the pulse being 
w-1, the response of the dielectric, that is, the amplitude of polarization 
(omitting small transient overshoots), would follow the dotted curve 
in passing through the various resonances. This is the type of field 
application we use below. 

A further assumption is implicit in Fig. 2, namely, that the series 
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of resonances make either comparable or increasing contributions to the 

dielectric constant but not decreasing contributions. The purpose of 

this assumption is to ensure that when we excite the ith resonance, 

the lower frequency resonances are neglibly excited. The assumption 

does not affect the conclusions drawn. The latter are based on the 

predominant excitation of a single resonance, independent of how the 

excitation is achieved. 
Following Eq. [16], the dielectric constant K4 is 

Wpt2 (0pl}12 
K,-1+ + + . 

atti2 w2 wi+12 - ro2 

DIELECTRIC 

CONDENSOR 

iD 

P=1,1+P¡i¡+ 

+ + + + + + + + + + 

la) w -i¡> DWELL TIME > w¡' 

Ibl 

+ + + 

IEP; 1¡ 

w¡ > EXTRACTION TIME > w¡¡¡ 

Idl 

FIG. 3 

EPI Kw 

47/P¡ 

[17] 

Fig. 3-Polarization of a dielectric by transient exposure to an electric 
field. 

Fig. 3 shows schematically the series of steps designed to impart 

the maximum energy to the ith mode of oscillation by transient ex- 

posure to an electric field. In brief, the dielectric is exposed to an 

electric field for a time long enough to polarize all of the oscillators 

beginning with w and extending to higher frequencies but too short 
to polarize the lower frequencies. The dielectric is then removed in a 

time long enough to allow the oscillators with frequencies m;+1 and 

higher to depolarize but too short to allow the oscillators «,{ to de- 

polarize. In this way the oscillators w, are fully polarized by the 

electric field and retain that polarization after the field has departed. 

The energy of the polarized dielectric in this last step is the energy 
imparted to the medium. 
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The definition of /3 in terms of this model is the ratio of the energy 
of the polarized dielectric (Fig. 3C) to the "available" energy of the 
vacuum capacitor. The available energy of the capacitor is its vacuum 
field energy divided by Ki+1. The energy per unit volume of the 
polarized dielectric is 

1 (47rPi)2 
E,,. = + 47r6Pi 

87r Ki+1 
[18] 

The first term is clearly the electric field energy of the polarization 
charge Pi. The second term is the elastic or "spring" energy that was 
stored in the polarized oscillators when they were first immersed in the 
capacitor field. To emphasize that this term is an elastic energy, and 
not an electrical energy in the sense of macroscopic electric fields, we 
can freeze the polarized dielectric and discharge the surface polariza- 
tion charge so that no macroscopic fields remain. The remaining energy 
will then be the elastic energy 47r5Pi of the polarized oscillators. Note 
that the energy of the dielectric while immersed in the capacitor field 
also contains the two terms-an electric field energy and the same 
elastic energy of the polarized oscillators; 

6D F Ki2 
-=+(6+47rPi 47rPi+1 I 

...) _ 
87r 87r 87r 

1 

_ - (62 + 47r6Pi + 47r6Pi+1 + " ') 
87r 

The distinction between electric field energy and elastic energy is also 
brought out below (see Eq. [25]. 

From Eq. [18] and the definition of /3 we write 

R= 

1 r (47rPi)2 

J 

i 

IL 47r6Pi 
87r Ki+1 

1 D2 

87r Ki+1 

and use the conventional electrostatic relations, 

[19] 
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4nP{ _ 6(K, - K,+1) 
and 

D = KZ 

to reduce Eq. [19] to 

K{ - Ki+l 
/3= 

K{ 

ENERGY -LOSS PROCESSES 

[20] 

[21] 

Hence, Eq. [6] is confirmed as a proper expression for /3. 

To confirm the equivalence of Eqs. [6] and [7] we write Eq. [7] in 
terms of the electric and total energy of the medium as given in 
Eq. [18] ; 

1 (47rP{) 2 

87r K;+1 
R= 

1 r (47rPt)2 

Il + 47rP{ 87r K¡+1 

and use Eq. [20] to reduce Eq. [22] to 

Ki - K{+1 
a= 

K, 

[22] 

[23] 

Hence Eqs. [6] and [7] are both valid for expressions for /3. 

The equivalence of Eqs. [6] and [7] can also be shown in a way 
that further illuminates the distinction between electrical and elastic 
energy. 

From Eq. [16], 

Ki - Ki+1 47rn{e 

K{+1 K{+",{2 
[24] 

Eq. [24] is valid on the flat parts of the dielectric constant versus w 

(Fig. 2) where the dielectric constant is independent of o,. We now 
displace (polarize) each of the ith oscillators by an amount d so that a 
surface charge Ned is formed. Then 
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Ki - Ki+1 

Ki+1 

(4,rnied)2 

87rKi+1 

4irnie 47rnid2 
X - 

Ki+1mio,i2 ibrnid2 

11/2nimt(wid) 2 [25] 

The numerator is the electrical energy owing to the surface charge 
nied. The denominator is the maximum kinetic energy of the oscillators 
corresponding to an amplitude of oscillation d. The kinetic energy is 
also equal to the maximum potential energy of the oscillators-that is 
to say, their "spring" energy or elastic energy. Hence : 

and 

K,- Ki+1 Electrical Energy 

K +1 Elastic Energy 

Ki-Ki+1 

Ki 

Ki - Ki+1 

Ki+1 + (Ki - Ki+1) 

Electrical Energy 

[26] 

(Electrical ± Elastic) Energy 

Electrical Energy 
[27] 

Total Energy 

Hence, the definitions of ál3 given by Eqs. [6] and [7] are again shown 
to be equivalent. 

Note that in Eq. [25], the electrical energy increases as the square 
of the density n of oscillators while the elastic energy increases only 
linearly. 

The Lyddane-Sachs-Teller Relation 

The free-standing polarized dielectric in Fig. 3C is an "electret," at 
least for the time required for the polarization to relax. In actual 
electrets the polarization is permanently frozen in by cooling and 
freezing a liquid dielectric in an electric field. The ionic part of the 
polarization is thereby frozen, while the electronic part is of course 
free to act. In actual electrets the ionic polarization is likely caused 
by the orientation of permanent dipoles and consequently does not 
carry with it an elastic energy. 
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The energy of the "electret" with its surface charge still intact is 
given by Eq. [18] 

1 (474P,)2 
Energy of "electret" = 

L 

+ 47r6P, . 

(with surface charge) 87r L Ki+i 
[28] 

With the aid of Eq. [20] this energy can be written in terms of D, the 
vacuum electric field of the capacitor used to induce the polarization in 
the "electret" : 

D2 L 

1 1 

, Energy of "electret" = 
(with surface charge) 87r K;+1 K, 

If K,» Ks+1 this energy reduces to 

D2 

87rK,+1 

[29] 

and, of course, if K,+1-> 1 the energy is just that of the initial ca- 
pacitor, as one would expect. 

One can now discharge the surface charge of the "electret" (e.g., by 
ionizing the surrounding air) while retaining the frozen polarization. 
The remaining energy is then just the elastic energy given by the 
second term of Eq. [28] ; 

6P, 
Energy of "electret" = 

(without surface charge) 2 

or, with the aid of Eq. [20]. 

D2 K, - K,+1 

87r K,2 
[30] 

This is the "frozen in" elastic energy that would be given up as heat 
if the "electret" were warmed to the point of releasing the polarization. 

The Lyddane-Sachs-Teller relation is 

0,12 
KL 

«,t2= Kg 
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and relates the longitudinal and transverse frequencies of the polar 
optical modes of an ionic lattice to the low -frequency dielectric constant, 
KL, and the high -frequency or electronic part of the dielectric con- 
stant, KH. The squares of the frequencies are proportional to the 
energy per unit volume of the vibrating lattice. The transverse vibra- 
tions have only an elastic energy since macroscopic electric fields would 
violate the essentially conservative (or relatively static) character of 
the fields. The longitudinal vibrations have the same elastic energy 
plus an electric field energy due to the longitudinal polarization of the 
lattice. Hence, the Lyddane-Sachs-Teller relation can also be regarded 
as the ratio of the energies of a charged and a discharged "electret" 
keeping the volume polarization intact. This ratio from Eqs. [29] 
and [30] is 

Energy of charged "electret" Ki22 Ki ft,i2 

= _ =- . [31] 
Energy of discharged "electret" K,Ki+l Ki+i wt2 

Eq. [31] is a generalized form of the Lyddane-Sachs-Teller relation 
holding even when there are more than the usual two resonances-ionic 
and electronic-of an ionic solid. 

Coupled Phonon-Photon Emission 

If a shallow trapped electron recombines with a free hole in the valence 
band to emit a photon, part of the energy is also radiated away in 
the form of phonons. Hopfield6 computed the phonon energy to be 

2 e2 CE EW\ 

Ephonon = J\ r (2,) l/2 
E r E 

where e2/(Er) is the binding energy and r the radius of the shallow 
trapped electron. Williams' has confirmed this relation in studies of 
radiation from GaAs. 

In terms of the definition of our coupling constant /3, e2/(Er) is 
the available coulomb energy and (Eo - Ey)/Eo is the expression for (3 

for polar optical phonons. The product of these two factors is, then, 
the energy transferred from the coulomb field to the lattice in the form 
of elastic energy, and is the phonon energy left behind when the 
electron makes its radiative transition. 
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Range of Validity of Deformation Potential 

The deformation potential B for acoustic phonons is defined' as the 
shift in energy of the bottom of the conduction band (or top of the 
valence band) per unit strain s of the lattice. By the nature of its 
definition, the concept cannot remain valid down to dimensions as small 
as a lattice spacing since deformations of one lattice spacing cannot 
be precisely associated with a band edge. 

The present definition of coupling constant f offers another 
quantitative criterion for the dimension or wavelength at which the 
deformation potential no longer can remain a constant. The coupling 
constant áf3 was defined as that fraction of the available coulomb energy 
that could be transferred to the lattice. Hence, Q cannot logically 
exceed unity. In order to find the shortest wavelength for which B is a 
constant, we equate the (3 for acoustic phonons (see e.g. Part II of this 
series) to unity; 

aKB2 
Q= <1. 

Ce2a2 

If we choose the following representative values : K = 10, B = 4 eV 
= 6 x 10-12 erg, C = 1011 dynes/cm2, e in e.s.u., then 

a2.5X10-7Cm. 

For wavelengths shorter than 2.5 x 10-7 cm the value of B must de- 
crease at least in proportion to the wavelength in order that ál3 not 
exceed unity. 

Lattice Instability 

In an early discussion of a possible model for superconductivity, 
Frohlich' proposed that, under certain conditions, the conduction band 
of a metal might spontaneously deform into a sine -wave pattern with a 
period of a few lattice spacings in order to achieve the lowest energy 
state for the metal. The periodicity of the conduction band edge would 
then give rise to a set of narrow forbidden gaps. 

Conceptually, the spontaneous deformation of the lattice means that 
the electrical energy gained by the electrons settling into the troughs 
of the sine -wave distortion must exceed the total energy required to 
distort the lattice. Since the ratio of electrical to total energy of a 
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lattice distortion is one of the ways of defining the coupling constant ¡3, 

it must then follow that /3 would have to exceed unity. On the other 

hand, an equivalent definition of /3 as the fraction of available coulomb 

energy that can be imparted to the lattice precludes ¡3 exceeding unity. 

Hence, the lattice instability is logically excluded. 

Self -Trapped Electrons 

It is expected from the theory of polarons9 that an electron can be 

self trapped in an ionic crystal provided 

a= 
(Eo - .)e2 in 

EDEop ri.8w 

> 6. 

This condition is almost satisfied in ionic crystals and would be more 

than satisfied if the frequency w of optical phonons could be substan- 

tially reduced from its usual value of about 1014/sec. 

Toyozawa' has examined the corresponding problem for non-ionic 

solids, namely, the criterion for self trapping of an electron by acoustic 

phonons and gives the condition 

mB2 
> 1, 

22h2Ca 

where a is the dimension of the self -trapped electron. Its smallest value 

is a lattice spacing. We can explore the possibility of satisfying this 

criterion by comparing it with the expression for /3; 

7r KB2 
R= '.. 1, 

4 e2Ca2 

where we have replaced A by 2a. 

Noting from the earlier argument that B is a constant only for 
A = 2a > 2.5 x 10-7 cm where the value of /3 approximates unity and 

that B « A for smaller A, we can write 

7r KB2 2.5 X 10-7 2 

, 

4 e2Ca2 2a 
a>1.2X10-7cm, 

i 
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or 

B2 4 e2 -=--X 10-1*. 
C K 

We insert this value into Toyozawa's condition to obtain 

2 x 10-" e2m 

ll7r h2Ka 
> 1, 

or, since h2/e2m = 0.5 x 10-8 cm, 

10-4 
> 1, 

8 Ka 
a>1.2X10-7cm 

The self -trapping condition is obviously not satisfied for dielectric 
constants K > 1, that is, for any real material. 

For a < 1.2 X 10-7 cm, we give /3 its largest value, namely unity, 
and the above argument yields 

108a 
> 1, 

8K 
a < 1.2 X 10-7 cm 

which, again, is not satisfied for real materials. 

Real Versus Imaginary Part of the Dielectric Constant 

When a dielectric is subjected to an ac field, the rate of loss of energy 
to the dielectric and its dissipation by the dielectric into heat is, by 
definition, given by the imaginary part of the dielectric constant. 
Hence, the conventional formalism for energy loss by an electron to a 
dielectric is couched (see Eq. [36], below) in terms of the imaginary 
part of the dielectric constant. The pulse of electric field exerted by 
the electron on an element of the dielectric must, of course, be resolved 
into its fourier components. Our formalism, on the other hand, is 
couched in terms only of the real part of the dielectric constant. While 
the Kramers-Kriinig relations allow the imaginary part of the dielectric 
constant to be expresséd in terms of the real part, one normally expects 
the damping constant y (see Eq. [38]) to appear in the final expression. 
Our formalism does not contain y. What we wish to show is that, in a 
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profound sense, the fast-moving electron is insensitive to the presence 

or absence of dielectric loss processes. 
In Fig. 4 we show an electron moving past three different types of 

elements that the electron might encounter in its medium. The first is 

a free charge, the second is a bound oscillating charge having negligible 
frictional loss, and the third is a bound oscillating charge having sig- 
nificant frictional loss. We assume, as is true for most of the range of 

FREE BOUND CHARGE HOUND CHARGE 

CHARGE INO FRICTION) (WITH FRICTION) 

o 
PATH OF IMPACTING ELECTRON 

FIG. 4 

Fig. 4-Three types of elements encountered by a high -velocity electron 
in a solid medium. 

loss processes we have discussed, that the electron passes each of these 
elements in a time short compared with the response time of the 
element. That is to say, the electron gives each element an impulsive 
kick so that the element undergoes a vanishingly small displacement 
during the transit of the impacting electron. The meaning of this 
statement is that the impacting electron does not remain near each 

element long enough to distinguish whether the element is free, bound 
without friction or bound with friction. In each case, the impacting 
electron delivers substantially the same impulse (force x time) and, 
hence, the same energy, assuming the three elements to have the same 
mass. After the impacting electron has passed, each element disposes 
of its energy in its own way. The impacting electron is unaware of 
these subsequent events; it only knows that it has lost the same amount 
of energy to each of the elements. Since the impacting electron is 
unaware of the lossy nature of its medium, it is superfluous to intro- 
duce that information into the problem. Moreover, if it is introduced, 
it must then drop out in the subsequent analysis. It is for this reason 
that the rate of loss of energy by fast electrons can, at the outset, be 
expressed in terms of the real part of the dielectric constant only, 
and that substantially all trace of lossy nature of the medium be 
ignored. 

The above arguments are valid for fast encounters in which the 
electron interacts with elements of the medium in times short com- 

pared with the response time of the element. When the converse is 
true, the electron does remain in the neighborhood of an element long 
enough to sense the lossy nature of the element. Here, the imaginary 
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part of the dielectric constant does play a significant role. It should 
be noted, however, that, in the problems we have discussed, the rate 
of energy loss in this regime occurs at the maximum of the energy -loss - 
versus -electron -velocity curve and that this maximum can be approxi- 
mated within a factor of two by a smooth extrapolation of the high - 
velocity part of the curve where only the real part of the dielectric 
constant is significant. 

We show in the following argument how the conventional formalism, 
couched in terms of the imaginary part of the dielectric constant, can 
be converted, in the case of widely separated resonances, into a form 
containing only the real part of the dielectric constant and no trace of y, 

the measure of the dielectric losses. 
The rate of energy loss to polar optical phonons, is, in our formalism, 

dE KL - KH e2w02 r2 
-= In - , 

dt KLKH y r1 
[32] 

where (Do is the optical phonon frequency, KL the dielectric constant for 
frequencies below wo, and K,, the same for frequencies above 04). The 
energy loss takes place to elements of the medium lying between the 
radial distances r2 and r1 from the electron path. r2 = vwo-1 and r1 

= h/(mv). If we fasten our attention on a particular radial shell sur- 
rounding the electron path such that the radius varies by only a factor 
of about 2, the logarithmic factor reduces to unity. From the classical 
form for the dielectric constant (see Eq. [16] ) 

4ane2 
KL-Ka= 

Mwo 

w 2 v 

02 
a 

[33] 

Here n and M are the density and mass, respectively, of the ions that 
give rise to the optical phonon frequency wa. With these considerations, 
Eq. [32] becomes 

dE 1 e2wp2 

dt KLKH v 
[34] 

If we assume further that KL - KH << KH, then KL - KH and Eq. 34 
can be written 

dE 1 e2, 2 
D 

dt KS2 v 
[35] 
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We undertake, now, to show* how the conventional form for energy 
loss" 

m 
dE 2e2 dq 1 -= - -- %,I, 
dt 7rv q ,f K(q,w) 

o o 

[36] 

reduces to Eq. [35]. The integral over q in Eq. [36] leads to the 
logarithmic factor in Eq. [32]. By confining our attention to a shell in 
which the radius varies by about a factor of two, this integral yields 
a factor of unity. Moreover since we are concerned with the loss of 
energy to the polar optical phonons only, the upper limit of the integral 
over w can be replaced by wo+, a frequency somewhat in excess of wo. 

Eq. [36] then becomes 

0,0+ 

dE 2e2 1 

w/,,, dw. 
dt wv K(0) 

0 

We write K(w) in the form 

w2 P 
K(w) = 1 + + R, 

0)2 - 02 

[37] 

[38] 

where R is the real part of the contribution to the dielectric constant 
of elements (e.g., valence -band electrons) having speeds of response 
much greater than w0. The imaginary part of these contributions will 
be substantially zero for frequencies near or below wo+ where the inte- 
gration terminates. 

From Eq. [38] it follows that 

1 top yo) 

Im = . [39] 
K(w) L(R+1)(w2-wo2)-wP2]2+ (R +1)2720,2 

By our assumption of KL - KH «KH, (R + 1) 0,02» Wp2. It then fol- 
lows, writing w = wo + .5w, that the major contribution to the integral 
in Eq. [37] occurs near w = w0 and in the range of 2_w = y. Hence 
Eq. [37] becomes 

* I am indebted to Dr. Smith Freeman for the ensuing argument. 
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dE 2e2roP2(nQo, 2 e201,2 

dt 7rv(R + 1) 2y.)a (R + 1)2v 

2 e2.,p2 

7r KH2v 
[40] 

Within these approximations Eq. [40] then matches Eq. [35]. The 
lossy nature of the dielectric, measured by y, drops out in the evaluation 
of Eq. [36] because the integral has its major value in the range 
2&u = y. Another way of stating this is that Eq. [36] involves the 
integration of the imaginary part of the dielectric constant over a 
range of w where it has a significant value, and the content of this 
integral is a constant independent of y. 

An alternative way of carrying out the argument is to evaluate 
KL - KH through the Kramers-Krünig relation; 

2 
K1(0) - K. =- f K2(µ) dµ, 

Ir µ2 - 
o 

where K1 and K2 are the real and imaginary parts of the dielectric con- 
stant. The result is in the form : 

KL -K - K2 (trio ).50.) K2 (0o) y constant 

(4,o 

since K2 p)y is a measure of the content of the imaginary part of the 
dielectric constant near 0,0 and is a constant independent of y. 

Spontaneous Emission 

We conclude this series with a reminder that the major part of it, the 
rates of energy loss by fast electrons in a solid, is concerned with 
spontaneous emission. In the literature on spontaneous emission in 
vacuum, the quantum mechanical formalism has been variously inter- 
preted to reflect the perturbation of an excited state by zero -point 
vibrations in the vacuum field; to reflect the interaction between an 
excited state wave function and a possible mode of vibration in the 
vacuum; and, often, to reflect one of the mysteries peculiar to quantum 
mechanics, and not describable in classical language. Spontaneous 
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emission in solids is subject to be the same formalism. In the solid, how- 

ever, it is possible to trace the physical origin of spontaneous emission 

to the simple, classical, and graphic concept of the polarization of the 

solid by the electric field of the electron. The energy of the distorted 

solid left in the trail of the fast-moving electron constitutes the average 

rate of spontaneous emission. This classical concept leads to the defini- 

tion of a coupling constant, /3, which is equal to the ratio of electrical 

to total energy of the distorted solid (or medium) . The coupling 

constant is symmetrical in the sense that it measures both the fraction 

of coulomb energy of the electron that can be transferred to the lattice 

and the fraction of distorted -lattice energy that can be transferred to 

electrons. The coupling constant is valid both in the classical limit of 

energy exchange with classical waves (acoustoelectric effect) and ín 

the quantum limit of energy exchange with phonons (electron-phonon 
interactions) . Finally, it is valid both for induced emission and for 

spontaneous emission processes, as indeed, is dictated by detail balance. 
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Addendum to Part III 

One of the notable and puzzling observations about the acoustoelectric 
effect is that the saturated drift velocities in GaAs and InSb are several 

times larger than the velocity of sound. In CdS and ZnO, the saturated 
drift velocities are, as expected, quite close to the velocity of sound. 

An argument was proposed in Part III to account for this difference in 

terms of the different behavior of the acoustoelectric effect in materials 
for which ql > 1 (GaAs and InSb) and those for which ql <1 (CdS and 

ZnO). 
A more likely source for this difference in behavior lies in the 

difference in coupling constants 13 for the two types of material. 
Qualitatively, one would expect that, in materials with a weak coupling 

constant, very high elastic strains would be needed to generate the 
electric fields required to bunch the carriers in the troughs of the 
acoustic waves. If this strain lies near the yield point of the material, 
the acoustic losses would be expected to increase so rapidly with increas- 
ing strain that the requisite strain could not be achieved. 

Quantitatively, following the model initially cited by Smith," one 

requires the electric field of the acoustic wave to be sufficient to ac - 
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comodate the space charge of the electrons in a half wavelength. Thus : 

4a nea 6_--. 
K 2 

The value of A/27r at maximum gain is a Debye length: 

kT 
A2 = (47r)3 

Kne2 

Also, by definition, 

R= 
Electrical energy 

Total energy 
K62 

4irCS2 

From these three equations, with C = 5 x 1011 dynes/cm2, we compute 
the strain S required to trap all of the carriers: 

5 X 10-12 n 
S= 

K R 

For CdS, K = 9.3 and /3 = 5 x 10-2. For GaAs, K = 12.5 and /3 = 2.4 
X 10-3. These values give 

and 

Sods = 2.3 x 10-12n112, 

SGnAs = 8 X 10-12n1/2, 

Since the carrier densities are usually in the range of 1014-1016/cm3, 
these expressions yield strains in the range of 10-4 to 10-3, namely, in 
the range of plastic flow or brittle fracture. If, in GaAs, strains ap- 
proaching brittle fracture are reached before all of the carriers are 
bunched in the troughs of the acoustic waves, it is likely that the 
acoustic losses will increase abruptly and the current will level off at 
values well above those expected for complete saturation at the drift 
velocity of sound. Evidence that the strains can be in the range of 
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irreversible damage was found by Smith, in some of his early work on 

CdS, in the form of macroscopic holes drilled through crystals in which 
the acoustic flux was more than high enough to saturate the drift 
current. 
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Low -Cost Pulsing of Avalanche Diodes 

A. S. Clorfeine, R. D. Hughes, and S. Weisbrod 

RCA Laboratories, Princeton, N. J. 

Abstract-Because of the characterístícs of avalanche diodes, modulation of 

these oscillator elements can, on the one hand, be simplified and, on 

the other, present special problems. Specifically, a low -power modu- 

lator can be used to deliver large pulse powers, and important cost 
savings can be effected in the design of an avalanche -diode modulator. 

Also, the use of an RC circuit is found to be quite useful when the 

diode Is operated in the high -efficiency mode. Several methods are 

discussed for protecting the output transistor against diode failure. 

Experimental verification of the major points presented is given. A 

"minipulser" occupying less than 0.1 ft3 was built and successfully 

tested. 

Introduction 

In this report we consider the problem of providing pulse power to 

avalanche diodes. The modulator (pulser) research was motivated by 

two factors, (1) the rapidly increasing importance of avalanche diodes 

as sources of pulsed (as well as CW) microwave power and (2) the 
unpleasant fact that pulse -modulator cost is greater than that of the 
diode and rf circuitry. Thus, it has become a major importance to 

reduce modulator cost. We shall discuss here modulation procedures 

that accomplish this purpose. More specifically, it is shown (a) how a 

low -power general-purpose modulator can be employed to deliver large 
pulse powers, (b) how a low -price transistor can be substituted for a 

high -price transistor in the fabrication of a special-purpose avalanche - 
diode modulator, (c) what auxiliary circuit measures can be taken to 

protect the output transistor, and (d) how to handle a special problem 
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presented by a diode when it is operated in the high -efficiency mode. 
Experimental results are also presented; these include the use of a 
specially designed portable "minipulser" to obtain the required large 
pulse powers. 

+ EDD 

LOW - VOLTAGE 
MODULATOR 

L 

(al 

AVALANCHE DIODE 

r--iIIP nh 

to EDC R L 

LOW -VOLTAGE 
MODULATOR 

-1 

lb) 

AVALANCHE DIODE 
(RF CIRCUITRY NOT 
SHOWN) 

f` 
Fig. 1-Pulsing a high -voltage avalanche diode with a low -voltage pulser. 

Some Basic Considerations 

Once it is stipulated that the load for the modulator is to be an ava- 
lanche diode (or any other device which can be biased to a relatively 
high voltage while drawing little current), then the technique illus- 
trated in Fig. 1(a) becomes applicable. The low -voltage modulator may 
be a simple periodic source of pulses or a more complicated coded 
modulator. A dc voltage, ED0, biases the diode slightly below its break- 
down value. The capacitor is charged to the same voltage (it is assumed 
that a do charging path through the modulator is provided). When a 
pulse of voltage is turned on, the diode fires (avalanches) and stored 
energy is released from the capacitor. C is sufficiently large so that 
thé voltage change across it during the pulse is small. The inductance 
L helps isolate the battery from the pulser during the pulse; however, 
it may not be necessary if the internal resistance, R, associated with 
EDO is sufficiently high. Note that the modulator retains control of the 
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output pulse, i.e., the diode extinguishes when and only when the 
modulator pulse is turned off. Most importantly, note that, with this 
pulsing technique, a low -voltage low -power pulser can be used to 
generate the required high -power pulses. 

Most of the remarks made concerning the circuit of Fig. 1(a) are 
equally applicable to that of Fig. 1(b) in which the diode and capacitor 
have been interchanged and the polarity of the pulser has been re- 
versed. The latter circuit has two advantages. First the pulser, dc 
source, and diode can be simultaneously grounded. Secondly, in case 
the diode shorts, the pulser is not subjected to a large and possibly 
destructive do voltage as is the case for the circuit of Fig. 1(a). 

AVALANCHE 
DIODE 

C. 

AVALANCHE 
DIODE 

(Dl 

Fig. 2-Modulators for avalanche diodes. 

We have described how a low -power general-purpose pulser can be 
utilized to obtain high pulse powers into an avalanche diode. Now we 
discuss considerations pertinent to the design of a pulser specifically 
for use with avalanche diodes. Most of the modulator design (e.g. 
multivibrators and preamplifiers) can proceed in a conventional man- 
ner; however, to make allowances for the special properties of an 
avalanche diode as a load, the output amplifier stage should be altered. 
This is now discussed with reference, first, to Fig. 2(a), which again 
illustrates the basic scheme of Fig. 1(a), except that the inductance 
is removed, the output stage of the pulser is shown in more detail, and 
an isolating resistor Rt is added. Note that without the isolating' 
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resistor, the diode current in the absence of a pulse would assume a very 
small value, and the diode voltage, therefore, would be essentially at 
the breakdown value irrespective of the values of ED0 and EB+, as long 
as their sum exceeded the breakdown voltage. Actually, it is possible to 
simplify the circuit by omitting Ri and replacing the two do sources and 
capacitors by one of each. In using this simplification, however, we lose, 
first, the ability for individual control of the diode and transistor 
voltages and, second, one means of protecting the transistor against 
failure (this latter point will be discussed shortly). 

In any case, what is most important is that, because the load is an 
avalanche diode, we may use an output transistor with a relatively 
small voltage rating. For example, if the load were a conventional one 
and 150 volts were required, a de load -biasing technique could not be 
used and the output transistor, therefore, would have to be capable of 
handling at least 150 volts. For 150 volts (and the same current) into 
an avalanche diode, one may employ the dc load -biasing technique and 
an output transistor of, say, 20 volts. The cost difference between the 
two transistors can be appreciable, especially since they must be of 
high speed. 

These techniques become even more useful in the case of stacked 
diodes. Stacking avalanche diodes in series appears to be a feasible 
means of generating higher rf powers.' Unfortunately, the peak voltage 
required to operate a stack of diodes is large. Depending on what the 
required voltage and response time are, an appropriate transistor is 
likely to be nonexistent or, at best, exceedingly expensive. The dc - 

biasing technique described here obviates the need for such a super - 
transistor (or the need to consider the much less advantageous SCR- or 
tube -type modulators). 

In Fig. 2(b), we have added the elements R8, C, and D1. To under- 
stand the need for R$1 consider the situation which is characterized 
between pulses (i.e., with no transistor base current) by a transistor 
voltage, for example, of E14+ = 30 volts. We further assume, for the 
moment, that the elements R8 and C, are not used. The initial response 
to a pulse of base current is an increase in diode voltage and a like 
decrease in transistor voltage of, say, 20 volts. If, however, the diode 
is operated in the high -efficiency mode (also referred to as trapatt 
mode' and anomalous mode'), the diode voltage will subsequently 
undergo a large drop (typically 60 volts for an L -band diode), with the 
transistor voltage increasing by the same amount, in this case to 70 
volts. Thus, the transistor must be capable of handling this excess 
voltage without burning out and, preferably, without a significant 
increase in transistor (and diode) current. Therefore, we must use a 
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transistor with a voltage rating considerably higher than would other- 
wise be necessary. This problem, however, can be avoided by employing 
the resistor R,. If, for example, we wish to limit the transistor voltage 
to Ea+, the excess voltage, which in this case is 70-30 = 40 volts, may 
be absorbed across R,. Hence, if the operating current is 5 A, a resist- 
ance of 40/5 = 8 ohms would serve this purpose. Note that the addition 
of this resistance does not reduce system efficiency, since the power 
dissipated by R, (and, perhaps additional power) would otherwise be 
dissipated by the transistor. Note further that if too large a resistance 
is used, the threshold current for the high -efficiency mode may not be 
reached. A function of the capacitance C, is to short-circuit R, at the 
the beginning of the pulse, thereby permitting greater starting power 
without nullifying the effect of RR once the high -efficiency mode is 
triggered. C, also has been found, empirically, to improve the shape 
of the pulse. For the transit -time mode of diode operation, R, and C, 
are not necessary, since the change in diode voltage is negligible. 

It is particularly desirable in laboratory testing of diodes to 
minimize the probability that diode failure will trigger transistor 
failure. Since, for the pulsing techniques described in this paper, the 
circuit do voltage greatly exceeds the transistor rating, one might 
(depending on the specific circuit elements employed) encounter a 
situation where a shorted diode results in excessive transistor dissipa- 
tion. One way of possibly avoiding this problem is by employing the con- 
figuration of Fig. lb. Alternatively, a Zener diode (D1 in Fig. 2b) can 
be used to ensure that the transistor \ oltage does not exceed a given 
value. Finally, voltage division between R, and R can accomplish the 
same purpose. Certain factors should be considered, however, if the 
latter technique is used. If R; is made too small, then the diode current 
may become excessive when the des ice switches to the high -efficiency 
mode, since a reduction in diode voltage is accompanied by a reduction in 
voltage and current across R; and a shifting of this incremental current 
to the diode (this is most easily seen if one assumes a collector current 
that is invariant during the switch). On the other hand, too large a 
value of R; may necessitate an artificial increase in R and a consequent 
reduction in system efficiency. 

Experimental Results 

To show that a high -power avalanche diode can be operated with a 
relatively low -power general-purpose pulser, a diode was first pulsed 
conventionally and yielded an rf output power of 192 watts at 1103 
MHz. The power input to the diode was measured to be 762 watts. All 
of this power, of course, was being delivered by the pulser. 
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The same diode was then pulsed with a Hewlett-Packard 214A 

generator, rated at 200 watts. The desired operating current (6.4 

amperes) necessitated a transformer at the output of the pulser. The 
circuit of Fig. la was employed with EDo = 135 volts, L=0, and 
C = 3µf. Again an output of 192 watts at 1103 MHz was noted. The 
pulse waveform was excellent except for the increased rise time con- 

tributed by the transformer. Only 136 watts of generator power was 
required. 

3' 
5 

6 

Fig. 3-"Minipulser" for avalanche diodes. 

Our next objective was to construct and test a solid-state portable 
pulser using the techniques described in this report. The resultant 
"minipulser", is illustrated in Fig. 3. The instrument, which includes 
batteries, encompasses a total volume of less than 0.1 ft3 and delivers 
pulses of greater than 500 watts peak power at a rate of 300 pulses/sec. 
The preliminary stages of the minipulser consist of a free -running 
multivibrator, a monostable multivibrator, and a two -stage emitter - 
follower -amplifier; the output circuitry is as illustrated in Fig. 2b, 

(except that the Zener diode was not used) . The output transistor was 
an RCA -type 40341 with a collector -to -emitter breakdown voltage 
rating (with zero base current) of 35 volts. Other parameters in - 
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O.2µsec/cm 

(a) 

0.2µsec/cm 

(b) 

Fig. 4-Detected rf output, current, and voltage for avalanche diode powered 
with a minipulser. 

eluded En+ = 45 volts, Eoo = 135 volts, C = 5µf, R = 2.7 K and R, 
= 220 ohms. R, and C, were adjusted to 12 ohms and 3900 pF. 

The results obtained when the minipulser was used to modulate a 
high -efficiency -mode oscillator are shown in Fig. 4. The crystal voltage 
(upper trace in Fig. 4 (b) ) represents an output power of 138 watts 
at 1079 MHz. The pulse current is 5.2 A and the diode voltage, after an 
initial rise, falls to a value nearly 30 volts below the de value. 

Conclusions 

Because of the characteristics of avalanche diodes, modulation of these 
oscillator elements can, on the one hand, be simplified and, on the other, 
present special problems. Specifically, a lower -power modulator can he 
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used to deliver large pulse powers, and important cost savings can be 
effected in the design of an avalanche -diode modulator. Also, the use 
of an RC circuit is found to be quite useful when the diode is operated 
in the high -efficiency mode. Several methods are discussed for protect- 
ing the output transistor against diode failure. Experimental verifica- 
tion of the major points presented here are given. A minipulser occupy- 
ing less than 0.1 ft3 was built and successfully tested. 
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Static Negative Differential Resistance 
In Bulk Semiconductors 

F. Sterzer 
RCA Electronic Components, Princeton, N. J. 

Abstract-Several simple theorems are derived that are useful in deciding 
whether a given bar of bulk semiconductor can exhibit a static nega- 
tive differential resistance. 

Introduction 

A recurring question in the theory of bulk effect devices is whether a 
particular bulk device can exhibit a static negative differential re- 
sistance. One of the first authors to address himself to this question 
was Shockley' who in 1954 published his "positive conductance 
theorem". This theorem states that the static differential resistance 
of a 0table, uniformly doped semiconductor of uniform cross-section 
and with ohmic cathode and anode contacts must always be positive, 
even if the semiconductor exhibits a negative differential mobility. 
Kroemer,2 in 1970, generalized Shockley's positive conductance theorem 
to include arbitrary geometries and doping distributions, assuming in 
his calculations that diffusion effects could be neglected. In 1971, 

Hauge' showed that a material with negative differential mobility, a 
large field -dependent diffusion coefficient, and ohmic cathode contacts 
could exhibit a static negative differential resistance. Earlier (1968), 

Kroemer* had shown that a static negative differential resistance could 
also be obtained if, instead of ohmic cathode contacts, appropriate 
injecting contacts were used. 

In the present paper several elementary theorems are derived that 
are helpful in deciding whether a given bulk semiconductor device can 
or cannot exhibit a static negative differential resistance. The appli- 
cation of these theorems is illustrated by several examples, including 
a particularly simple derivation of the generalized form of Shockley's 
positive conductance theorem. 
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Some Elementary Properties of Devices with Static Negative 
Differential Resistance 

Consider a device with a voltage -controlled static negative differential 
resistance (see Fig. 1). For any voltage in the negative resistance 
region of the 1-V characteristics such as V2 of Fig. 1, there is always 

V V2 VOLTAGE - 
Fig. 1-Current-voltage characteristics of a device with a voltage -controlled 

static negative differential resistance. 

a corresponding voltage V1 in the positive part of the I -V character- 
istics such that 1(V1) = 1(V2). It follows therefore that: 
1. A device whose dc voltage is a single -valued function of dc current 

cannot exhibit a static voltage -controlled negative resistance. 
2. A device whose I -V characteristics is continuous and whose dc 

voltage is a multiple -valued function of do current must have a 
static voltage -controlled negative resistance?' 
The voltage V across a device is the negative of the line integral 

of the electric field E from cathode to anode, 

Anode V-- Eds ,f Cathode 
[1] 

* The corresponding theorems for devices with current -controlled nega- 
tive resistances are as follows: 
la. A device whose do current is a single -valued function of do voltage 

cannot exhibit a static current controlled negative resistance. 
2a. A device whose I -V characteristics is continuous, and whose do current 

is a multiple -valued function of do voltage must have a static current_ 
controlled negative resistance. 
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Eq. [1] shows that if the electric field distribution is a single -valued 

function of current, the voltage will also be a single -valued function of 

current. This fact coupled with Theorem 1 above yields the following 
theorems: 

3. A device whose static electric field distribution is a single -valued 
function of do current cannot exhibit a voltage -controlled static 
negative resistance. 

4. A device that exhibits a static negative differential resistance must 
have a static electric field distribution that, for a range of dc 

currents, is a multiple -valued function of dc current. 

Fig. 2 shows examples of static electric field distributions that 
would lead to a static negative differential resistance. Branches 1 of 
the field distributions correspond to voltages in the positive resistance 
region (such as V1 of Fig. 1) and branches 2 to voltages in the negative 
resistance region (such as V2 of Fig. 1). 

Derivation of Shockley's Positive Conductance Theorem 

We consider bulk devices with carrier velocities that are single -valued 
functions of electric field and ohmic cathode contacts. Diffusion effects 
are assumed to be negligible. 

Application of Poisson's equation yields the following equation* 

a2V DE J 
E =-E-=-n=--nd, 

as2 as 77 

[2] 

where E is the dielectric constant, n is the charge density, J is the con- 
duction current density, y is the electron velocity (the semiconductor 
is assumed to be n -type), and nd is the donor density. The electron 
velocity can be written as 

[3] 

where the mobility p, is a single -valued function of electric field. Com- 
bining Eqs. [2] and [3] gives 

DE e- = nd - - . [4] 
Ds µE 

* The calculations are carried out in one -dimension; extension to three - 
dimensions is straightforward. 
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The boundary condition for Eq. [4] (ohmic cathode contact) is 

E = O at s = O. [5] 

The value of E inside the semiconductor is uniquely determined for 
every value of current density J by Eqs. [4] and [5]. This means that 
the electric field distribution is always a single -valued function of cur- 
rent; field distributions like those shown in Fig. 2 cannot occur; and 

CATHODE DISTANCE 

CATHODE DISTANCE-. 

ANODE 

ANODE 

Fig. 2-Examples of static electric field distributions required in devices 
with a voltage -controlled static negative differential resistance. 
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according to Theorem 3 the device cannot exhibit a voltage -controlled 
static negative differential resistance. This remains true, of course, 
even if the differential mobility of the semiconductor is negative over 
large ranges of electric field, as is the case for transferred electron 
semiconductors. 

Devices with Non -Ohmic Cathode Contacts 

Diffusion is neglected, so that Eq. [4] applies. The cathode boundary 
conditions are classified into two groups : 

E = single -valued function of current at s = 0 

E = multiple -valued function of current at s= 0 

[6] 

[7] 

If the cathode boundary condition falls into the class described by 
Eq. [6], the argument made in the previous section applies and the 
device cannot exhibit a voltage -controlled static negative differential 
resistance. On the other hand, if the cathode boundary condition falls 
into the category described by Eq. [7], an electric field distribution 
such as the one of Fig. 2b is possible and the device can exhibit a static 
negative differential resistance.2.4 

Diffusion Effects 

If diffusion effects become important, then the electron velocity must 
be written as 

T D 

y = µE - - - (µn), 
n Ds 

[8] 

where T is the electron temperature. Substituting Eq. [8] into Eq. 
[2] yields 

DE J/µE -= nd 
Ds T 

1 - - (µn) 
µEn Ds 

[9] 

Note that Eq. [9] is a higher order equation in DE/Ds, since the 
product (µn) is a function of both E and s. It follows that DE/Ds, and 
therefore also E, can be multiple -valued functions of current, and the 
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possibility of a static negative differential resistance is not ruled out 
by Theorem 3. That a static negative differential resistance can be 
obtained, at least in principle, when diffusion effects are significant 
can be demonstrated by detailed calculations.35 
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J. L. Deckert High Voltage Electron Discharge Tube Having Anode Target 
(3,590,308) 
R. A. Dischert and L. J. Thrope Gamma Correction and Shading Modulation Circuitry 
for a Television Camera (3,588,338) 
P. J. Donald Projection of Color -Coded B and W Transparencies (3,582,202) 
M. S. Fischer Control Circuits (3,590,275) 
R. E. Flory and W. J. Hannan Crosstalk Reduction in Film Player (3,584,147) 
R. E. Flory Continuous Motion Apparatus for TV Film Scanning (3,584,148) 
R. E. Flory Registration Apparatus for Television Film Projection System 
(3,584,149) 
H. F. Frohbach Lens Array Imaging System for a Color Encoding Camera 
(3,588,326) 
G. F. Granger and H. Khajezadeh High Voltage Integrated Circuit Including an Inver- 
sion Channel (3,582,727) 
P. E. Hafer) Video Amplifier (3,585,295) 
V. P. Head Self Righting Vessel (3,585,952) 
J. T. Heizer Signal Transmission in Recorder Systems with Impedance Transforma- 
tion (3,585,312) 
M. E. Heller and H. J. Gerritsen High Resolution Laser Engraving Apparatus 
(3,588,439) 
D. V. Henry Method of Assembly of Electron Tubes (3,587,148) 
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14. B. Herscher and T. B. Martin Word Recognition System for Voice Controller 
(3,588,363) 
K. H. Hoffman Trigger Pulse Circuits (3,584,240) 
M. Horn and K. Sadashige Servo System (3,586,946) 
W. P. Imhauser Microwave Transistor with a Base Region Having Low -and -High - 
Conductivity Portions (3,585,465) 
E. King Digital Companding Loop for Monobit Encoder/Decoder (3,587,087) 
J. C. Kmiec and A. C. Luther, Jr. Video Tape Reproducer System Having Automatic 
Standard Selection (3,586,769) 
R. M. Kongetka Transmission Including Toothed Belt and Partially Toothed Pulley 
(3,583,250) 
K. A. Long Shadow -Mask Cathode Ray Tube Including a Masking Member Compris- 
ing a Skirt Having Indentations and Projections Overlapping and Attached to a Frame 
(3,585,431) 
D. G. Macaulay Reed Armature Valves for Controlling Fluid Flow (3,584,650) 
A. Macovski Colored Light Encoding Filter (3,585,284) 
D. F. Martin Method and Apparatus for Manufacturing Magnetic Recording Tape 
(3,588,771) 
T. B. Martin Speech Synthesizer Utilizing Timewise Truncation of Adjacent Phonemes 
to Provide Smooth Formant Transition (3,588,353) 
A. H. Medwin integrated Circuit (3,588,635) 
C. M. Menganl Character Parity Synchronizer (3,587,043) 
C. H. Morris, Jr. Process for Fabricationg Replicating Masters (3,585,113) 
C. M. Morris High Voltage Electron Discharge Tube (3,588,575) 
L. J. Nicastro Electro -Optic Devices for Portraying Closed Images (3,588,225) 
W. L. Oates Semiconductor Hybrid Power Module Package (3,586,917) 
L. S. Onyshkevych Magnetostrictive Element (3,582,408) 
T. G. Paterson Electron Check Cashing System (3,588,449) 
S. S. Perlman and J. H. McCusker Adaptive Resonant Filter (3,588,551) 
H. J. Prager, K. K. N. Chang, and S. Weisbrod UHF or L -Band Non -Free -Running 
Avalanche Diode Power Amplifying Frequency Synchronized Oscillator (3,588,755) 
J. N. Pratt Keyed Burst Separator (RE 27134) 
D. H. Pritchard Adjustable Bandwidth Optical Filter (3,588,244) 
M. Rosenblatt Digital Signalling System (3,585,596) 
R. A. Rubenstein and J. C. Schopp Apparatus for Monitoring and Controlling the Con- 
centration of Powder Particles in a Mixture of Powder and Magnetic Particles 
(3,587,521) 
R. E. Salveter, Jr. Method of Coating Wide -Angle Cathode Ray Picture Tube En- 
velopes (3,582,394) 
R. F. Sanford Coding Arrangements for Multiplexed Messages (3,585,290) 
T. A. Saulnier Method for Metallizing Phosphor Screens (3,582,389) 
T. A. Saulnier Method of Metallizing Phosphor Screens Using an Aqueous Emulsion 
Containing Hydrogen Peroxide (3,582,390) 
B. Schwartz and W. H. Liederbach Miniature Ceramic Capacitor and Method of Manu- 
facture (3,585,460) 
W. W. Slekanowicz, T. E. Walsh, and D. J. Blattner Low Reluctance Resonant Struc- 
ture in Waveguide (3,582,831) 
R. E. Simon and R. L. Rodgers Gallium Arsenide Phosphide Camera Tube Target 
Having A Semi -Insulating Layer on the Scanned Surface (3,585,430) 
A. A. Smalarz Clamp Assembly (3,586,356) 
F. M. Sohn Rectangular Shadow Mask Type Color Picture Tube with Barrel Shaped 
Mask Frame (3,588,568) 
P. D. Southgate Field -Excited Semiconductor Laser which Uses a Uniformly Doped 
Single Crystal (3,586,999) 
C. Sun Frequency Multiplier (3,582,760) 
G. W. Taylor and P. Goldstein Light Aperture Matrix (3,582,907) 
L. J. Thorpe Automatic Black Level Video Signal Clipping and Clamping System 
(3,582,545) 
D. A. Wisner Optical Flaw Detector (3,584,963) 
S. Wlasuk Test Signal Generator for Producing Test Patterns for a Television Re- ceiver (3,582,544) 
S. Wlasuk Test Signal Generator (3,586,755) 
O. M. Woodward Corporate -Network Printed Antenna System (3,587,110) 
C. M. Wright J -K' Flip -Flop Using Direct Coupled Gates (3,588,545) 
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Alvin S. Clorfeine received the B.S. degree magna cum 
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Michael Ettenberg received the B.S. degree in metallurgy 
from Polytechnic Institute of Brooklyn in 1964. From 1964 
to 1969 he attended New York University and received an 
M.S. in 1967 and a Ph.D. in 1969. His dissertation was con- 
cerned with the thermodynamic studies of compounds with 
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devices, tunnel diodes, Hall -effect devices, superconducting devices, and most 
recently avalanche diodes. 
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